Article Synopsis

  • Heart-rate monitoring is essential for personal healthcare, and a new system has been developed that is low-cost, noninvasive, and easy to use.
  • The system includes a self-powered wireless body sensor network that integrates a triboelectric nanogenerator, a power management circuit, a heart-rate sensor, and a Bluetooth module for real-time data transmission to smartphones.
  • The technology harnesses energy from human movement to power itself, allowing for continuous heart-rate monitoring without the need for external batteries, making it an innovative solution for personal health management.

Video Abstracts

SciShow

January 16, 2022

269,784 views


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b02975DOI Listing

Publication Analysis

Top Keywords

heart-rate monitoring
24
bsn system
12
triboelectric nanogenerator
8
body sensor
8
sensor network
8
heart-rate
8
noninvasive user-friendly
8
system developed
8
bluetooth module
8
monitoring
6

Similar Publications

Objective: Exertional heat illness (EHI) remains a challenge for those that exercise in hot and humid environments. Physiological status monitoring is an attractive method for assessing EHI risk and a critical component of recommended layered risk management approaches. While there is consensus that some combination of core body temperature, mean skin temperature, heart rate (HR), and hydration provide an indication of heat strain, a field-feasible metric that correlates to EHI incidence has not been identified.

View Article and Find Full Text PDF

Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.

Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.

View Article and Find Full Text PDF

Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.

Methods: A virtual driving simulator was utilized to carry out the experiment.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is associated with a higher prevalence of valvular diseases and increased mortality from cardiovascular causes. Factors that influence the genesis of cardiac valve calcification (CVC) in these patients are not well-defined.

Objective: To determine the risk factors for valvular calcification in patients with CKD.

View Article and Find Full Text PDF

Skin-adaptive focused flexible micromachined ultrasound transducers for wearable cardiovascular health monitoring.

Sci Adv

September 2025

State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En

Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.

View Article and Find Full Text PDF