98%
921
2 minutes
20
RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aa82a5 | DOI Listing |
Magn Reson Med
September 2025
Institute for Diagnostic and Interventional Radiology, School of Medicine and Health, TUM University Hospital, Technical University of Munich, Munich, Germany.
Purpose: To develop a method for abdominal simultaneous 3D water ( ) and ( ) mapping with isotropic resolution using a free-breathing Cartesian acquisition with spiral profile ordering (CASPR) at 3 T.
Methods: The proposed data acquisition combines a Look-Locker scheme with the modified BIR-4 adiabatic preparation pulse for simultaneous and mapping. CASPR is employed for efficient and flexible k-space sampling at isotropic resolution during free breathing.
Front Oncol
August 2025
Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia.
Introduction: The accuracy of dose delivery in radiotherapy is paramount to maximize tumor control while minimizing damage to surrounding healthy tissues. This study presents a comprehensive analysis of gamma index validation in the treatment of cancerous tumors using Monte Carlo simulations with GAMOS and GATE codes on a Varian medical linear accelerator. By leveraging the MC method's robust statistical capabilities, the precision of dose distributions in external radiotherapy is aimed to be enhanced.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
September 2025
Department of Radiological Technology, Kurashiki Central Hospital.
Purpose: The purpose of this study was to understand the temporal changes in the volume CT dose index (CTDI) and Image noise.
Methods: The following 3 types of X-ray CT scanners were used: Aquilion PRIME Beyond Edition (CANON MEDICAL SYSTEMS, Tochigi, Japan; referred to as System A), Aquilion PRIME SP (CANON MEDICAL SYSTEMS; referred to as System B), and SOMATOM Definition Flash (Siemens Healthineers, Erlangen, Germany; referred to as System C). The CTDI was measured by placing an ion chamber in an acrylic phantom.
Magn Reson Imaging
September 2025
Julius-Maximilians-Universität Würzburg, Department of Experimental Physics 5, Germany.
Purpose: Presenting a technique to quantify the transverse relaxation time T, which is associated with the diffusion of water molecules through the internal magnetic field gradients of the lung in-vivo.
Methods: A Half-Fourier-Acquired Single-shot Turbo spin-Echo (HASTE) pulse sequence with Hahn-echo preparation was implemented and used for image acquisition. Quantification of T was performed by acquiring multiple images with identical TE, but with a different number of refocusing pulses between excitation and signal acquisition.
Phys Med
September 2025
School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Australian Bragg Centre for Proton Therapy and Research, Adelaide, South Australia, Australia.
Background: The use of patient-specific apertures in pencil beam scanning (PBS) proton therapy improves target conformity but increases secondary neutron production and induces aperture activation. While brass is commonly used for apertures, Cerrobend and tungsten carbide may offer cost-effective alternatives.
Purpose: This study evaluates the viability of Cerrobend and tungsten carbide for PBS apertures by examining secondary neutron production and activation using Tool for Particle Simulation (TOPAS).