Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This Letter reports the successful use of feedback from a spin polarization measurement to the revolution frequency of a 0.97  GeV/c bunched and polarized deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control both the precession rate (≈121  kHz) and the phase of the horizontal polarization component. Real time synchronization with a radio frequency (rf) solenoid made possible the rotation of the polarization out of the horizontal plane, yielding a demonstration of the feedback method to manipulate the polarization. In particular, the rotation rate shows a sinusoidal function of the horizontal polarization phase (relative to the rf solenoid), which was controlled to within a 1 standard deviation range of σ=0.21  rad. The minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753 kHz, which changes the precession rate by 26  mrad/s. Such a capability meets a requirement for the use of storage rings to look for an intrinsic electric dipole moment of charged particles.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.014801DOI Listing

Publication Analysis

Top Keywords

storage ring
8
revolution frequency
8
precession rate
8
horizontal polarization
8
polarization
5
phase locking
4
locking spin
4
spin precession
4
precession storage
4
ring letter
4

Similar Publications

Beyond Fixed-Size Skyrmions in Nanodots: Switchable Multistability with Ferromagnetic Rings.

Nano Lett

September 2025

Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.

We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.

View Article and Find Full Text PDF

Synchrotron light sources are powerful platforms for cutting-edge, multidisciplinary research, with dozens currently in operation, construction or commissioning worldwide. It is widely recognized that different research areas have specific demands for source capabilities. For the majority of synchrotron facilities, delivering high-brightness, high-flux synchrotron radiation stably through high-current electron beams is the primary mode of operation.

View Article and Find Full Text PDF

Alkaline zinc-iron flow batteries (AZIFBs) are one of the promising aqueous redox chemistries for large-scale energy storage due to their intrinsic safety and low cost. However, the energy efficiency (EE) and power density of batteries with low-cost polybenzimidazole (PBI) membranes are still limited due to the relatively poor ionic conductivity of PBI in an alkaline medium. Here, this study proposes a novel chemical approach for regulating the chemical environment of the PBI membrane.

View Article and Find Full Text PDF

Applications of nuclear magnetic resonance in exploring structure and energy storage mechanism of supercapacitors.

Magn Reson Lett

May 2025

State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.

Supercapacitors, comprising electrical double-layer capacitors (EDLCs) and pseudocapacitors, are widely acknowledged as high-power energy storage devices. However, their local structures and fundamental mechanisms remain poorly understood, and suitable experimental techniques for investigation are also lacking. Recently, nuclear magnetic resonance (NMR) has emerged as a powerful tool for addressing these fundamental issues with high local sensitivity and non-invasiveness.

View Article and Find Full Text PDF

While the effects of new solid electrolytes and active materials in cathode composites for solid-state batteries are being intensively researched, little is known about the influence of mechanical processing on the properties of these composites. Here, the influence of mechanical process parameters on the production of LiPSCl and LiNiCoMnO composite cathodes applying a planetary ball milling process is systematically investigated. It is shown that the milling process has a significant influence on the microstructure of the composite by affecting the solid electrolyte particle size and the formation of electrolyte-active material aggregates.

View Article and Find Full Text PDF