98%
921
2 minutes
20
Layered double hydroxides (LDHs) used to recover P from wastewater have recently been proposed as new slow-release fertilizers. Here, the use of P-exchanged Mg-Al LDHs as powdered or granulated fertilizer is explored and compared with monoammonium phosphate (MAP), a fully water-soluble fertilizer, and with struvite, a recycled phosphate fertilizer with lower solubility. First, these three fertilizers were compared in a 100-day incubation experiment using P diffusion visualization and chemical analysis to assess P release from either granules or powdered fertilizer in three different soils. By the end of the incubation, 74-90% of P remained within the LDH granule, confirming a slow release. Second, a pot experiment was performed with wheat (Triticum aestivum) in an acid and a calcareous soil. The granular treatment resulted in a considerably higher P uptake for MAP compared to LDH and struvite. For the powder treatments, the P uptake was less than for granular MAP and was largely unaffected by the chemical form. The LDHs and struvite showed a lower agronomic effectiveness than granular MAP, but the benefits of their use in P recycling, potential residual value, and environmental benefits may render these slow-release fertilizers attractive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.7b01031 | DOI Listing |
Naturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China.
Light and darkness are critical environmental factors that regulate plant immune responses. OsPIL1, a phytochrome-interacting factor-like protein, has been implicated in rice immunity against Magnaporthe oryzae, although its underlying mechanism remains unclear. This study aimed to dissect how OsPIL1 integrates light or darkness to modulate rice immunity.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDF