Use of human aortic extracellular matrix as a scaffold for construction of a patient-specific tissue engineered vascular patch.

Biomed Mater

Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

Published: October 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic or biologic materials are usually used to repair vascular malformation in congenital heart defects; however, non-autologous materials show both mismatch compliance and antigenicity, as well as a lack of recellularization on its surface. Here, we constructed a tissue-engineered vascular patch (TEVP) using decellularized extracellular matrix (ECM) scaffold obtained from excised human aorta during surgery, which was seeded with patient-derived bone marrow CD34-positive (CD34+) progenitor cells. While cellular components were removed, the decellularized ECM scaffold retained native ECM composition, similar mechanical performance to undecellularized aortic tissue, and supported the adhesion, survival and proliferation of CD34+ progenitor cells. Interestingly, after in vitro seeding of decellularized aortic ECM scaffold for 21 d, CD34+ progenitor cells differentiated into mature vascular endothelial cells without addition of any growth factors, as confirmed by the increased levels of endothelial surface markers (CD31, Von Willebrand factor (VWF), VE-cadherin and ICAM-2) and upregulated gene levels (CD31, VWF and eNOS) concurrently with decreased expression of stem cell markers (CD133 and CD34), thus, resulting in surface endothelialization of decellularized ECM scaffold. Consequently, the patient-specific TEVP constructed in this study holds great potential for clinical use in pediatric patients with vascular malformation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/aa801bDOI Listing

Publication Analysis

Top Keywords

ecm scaffold
16
cd34+ progenitor
12
progenitor cells
12
extracellular matrix
8
vascular patch
8
vascular malformation
8
decellularized ecm
8
scaffold
5
vascular
5
ecm
5

Similar Publications

The development of biomimetic scaffolds that emulate the extracellular matrix (ECM) is critical for advancing cell-based therapies and tissue regeneration. This study reports the formulation of CHyCoGel, a novel injectable, ECM-mimetic hydrogel scaffold composed of chitosan, hyaluronic acid, chondroitin sulfate, and an amphiphilic stabilizer. CHyCoGel addresses key limitations of existing scaffolds, offering improved structural uniformity, injectability, and gelation suitable for cell encapsulation and minimally invasive delivery.

View Article and Find Full Text PDF

Bone-related injuries represent a major global challenge, particularly for the aging population. While bone has self-healing capabilities, large defects and non-union fractures often fail to completely regenerate, leading to long-term disability and the need for surgical intervention. Autologous bone grafts remain the gold standard for such procedures, but challenges such as limited donor availability and donor site comorbidity persist.

View Article and Find Full Text PDF

In both native and engineered tissues, the extracellular matrix (ECM) supports and regulates nearly all aspects of cellular pathophysiology, and in response, cells extensively remodel their surrounding extracellular environments through new ECM protein deposition. Understanding this intricate bi-directional cell-ECM interaction is key to tissue engineering, but it remains challenging to investigate. This is partly due to the limited sensitivity of conventional proteomics to capture low-abundance newly synthesized ECM (newsECM).

View Article and Find Full Text PDF

Xeno-Free Biocompatible Peptide-Based Bioinks Reinforced with Cellulose Nanofibers for 3D Printing.

Adv Healthc Mater

September 2025

Department of Oral Biology, The Goldschleger School of Dental Medicine, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 26745, ISRAEL.

Tissue regeneration is a complex biological process with limited self-repair capacity, necessitating engineered solutions to restore both mechanical integrity and biological functionality. In tissue engineering and regenerative medicine, 3D printing has emerged as a promising tool for fabricating scaffolds that mimic the natural extracellular matrix (ECM). However, many bioinks are derived from animal sources, posing risks of pathogen contamination and immune responses.

View Article and Find Full Text PDF

The basement membrane (BM), a specialized extracellular matrix (ECM), provides structural support for epithelial, endothelial, and other parenchymal cells. Once considered a static scaffold, the BM is now recognized as a dynamic and complex nanostructure composed of a diversity of molecules that actively regulate cell behavior and tissue organization. Its molecular composition, assembly, and remodeling are precisely controlled in a tissue- and stage-specific manner, contributing to the regulation of local and global mechanical properties and biochemical signaling.

View Article and Find Full Text PDF