98%
921
2 minutes
20
DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625118 | PMC |
http://dx.doi.org/10.1194/jlr.D077990 | DOI Listing |
J Lipid Res
September 2025
Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8. Electronic address:
Young females have higher circulating docosahexaenoic acid (DHA) levels than males, though the metabolic basis remains incompletely understood. Building on previous findings demonstrating higher hepatic synthesis of the DHA precursor, docosapentaenoic acid (DPAn-3) in males, this study extends the investigation to n-3 PUFA turnover in extrahepatic tissues of male and female C57BL/6N mice using compound-specific isotope analysis (CSIA). Animals were fed a 12-week diet enriched in either α-linolenic acid (ALA), eicosapentaenoic acid (EPA), or DHA, starting with a 4-week phase containing low carbon-13 (δC)-n-3 PUFA, followed by an 8-week phase with high δC-n-3 PUFA (n = 4 per diet, time point, sex).
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) is essential for brain and cognitive development in toddlers; however, global intakes often fall below recommended levels. This study evaluated the bioavailability of DHA from commercial toddler formulas fortified with either microencapsulated high-DHA fish oil powder or high-DHA fish oil. A double-blind, randomized controlled trial was conducted in 120 healthy Indonesian toddlers aged 2-3 years.
View Article and Find Full Text PDFEpilepsy Res
September 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
Introduction: Docosahexaenoic acid (DHA) is a bioactive fatty acid with safe and acceptable anti-seizure activity in clinical and animal studies. Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults, with a high rate of drug resistance. The peroxisome proliferator-activated receptor α (PPARα) is expressed in the brain and plays a significant role in oxidative stress, energy homeostasis, and mitochondrial fatty acid metabolism.
View Article and Find Full Text PDFBiomolecules
August 2025
CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
Alzheimer's disease (AD) is the most common form of dementia, affecting over 50 million people globally. Since 1906, efforts to understand this neurodegenerative disease and to develop effective treatments have continued to this day. Recognizing docosahexaenoic acid (DHA, 22:6n-3) as a safe, inexpensive and vital nutrient for brain health and cognitive protection due to its key role in brain development and function, this study explores novel, sustainable non-fish sources as potential dietary supplements to prevent or mitigate AD, within a blue biotechnology framework.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China.
α-Linolenic acid (ALA) serves as a precursor of long-chain ω-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Humans cannot produce ALA due to a lack of ω-3 (Δ-15) fatty acid desaturase (FAD), which converts linoleic acid (LA) into ALA in plants. We developed ALA hyperfortified intragenic rice via a double T-DNA transformation strategy, with an expression cassette containing endogenous ω-3/Δ15 fatty acid desaturase () gene, endosperm-specific promoter, and terminator in one T-DNA, and the selectable marker gene in the other.
View Article and Find Full Text PDF