Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using species distribution models and information on genetic structure and within-population variance observed in a series of common garden trials, we reconstructed a historical biogeography of trembling aspen in North America. We used an ensemble classifier modelling approach (RandomForest) to reconstruct palaeoclimatic habitat for the periods 21,000, 14,000, 11,000 and 6,000 years before present. Genetic structure and diversity in quantitative traits was evaluated in common garden trials with 43 aspen collections ranging from Minnesota to northern British Columbia. Our main goals were to examine potential recolonisation routes for aspen from southwestern, eastern and Beringian glacial refugia. We further examined if any refugium had stable habitat conditions where aspen clones may have survived multiple glaciations. Our palaeoclimatic habitat reconstructions indicate that aspen may have recolonised boreal Canada and Alaska from refugia in the eastern United States, with separate southwestern refugia for the Rocky Mountain regions. This is further supported by a southeast to northwest gradient of decreasing genetic variance in quantitative traits, a likely result of repeated founder effects. Stable habitat where aspen clones may have survived multiple glaciations was predicted in Mexico and the eastern United States, but not in the west where some of the largest aspen clones have been documented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5498503PMC
http://dx.doi.org/10.1038/s41598-017-04871-7DOI Listing

Publication Analysis

Top Keywords

quantitative traits
12
aspen clones
12
biogeography trembling
8
aspen
8
trembling aspen
8
models genetic
8
genetic variance
8
variance quantitative
8
genetic structure
8
common garden
8

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

A frequent goal of phage biology is to quantify how well a phage kills a population of host bacteria. Unfortunately, traditional methods to quantify phage success can be time-consuming, limiting the throughput of experiments. Here, we use theory to show how the effects of phages on their hosts can be quantified using bacterial population dynamics measured in a high-throughput microplate reader (automated spectrophotometer).

View Article and Find Full Text PDF

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.

Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.

View Article and Find Full Text PDF

Large-scale composite hypothesis testing procedure for omics data analyses.

NAR Genom Bioinform

September 2025

Mathématiques et Informatique Appliquées Paris-Saclay, AgroParisTech, INRAE, Université Paris-Saclay, 91120 Palaiseau, France.

Composite hypothesis testing using summary statistics is a well-established approach for assessing the effect of a single marker or gene across multiple traits or omics levels. Numerous procedures have been developed for this task and have been successfully applied to identify complex patterns of association between traits, conditions, or phenotypes. However, existing methods often struggle with scalability in large datasets or fail to account for dependencies between traits or omics levels, limiting their ability to control false positives effectively.

View Article and Find Full Text PDF