98%
921
2 minutes
20
There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of larvae to a range of field-realistic concentrations (0-10 ppb) of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange; however, no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on are most likely mediated by impacts on adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480390 | PMC |
http://dx.doi.org/10.7717/peerj.3417 | DOI Listing |
Toxicol Sci
September 2025
Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States.
Pollution can have lasting effects beyond the exposure period, potentially impacting multiple generations. Polybrominated diphenyl ether (PBDE) flame retardants are widespread, including in oceans, yet their multigenerational impacts remain poorly understood. We investigated whether BDE-99, a ubiquitous PBDE, induces neurobehavioral and molecular effects across generations in the fish .
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy. Electronic address:
Artificial light at night (ALAN) can disrupt numerous biological processes, and is increasingly studied in animal models. Here, we evaluated the impact of red and blue ALAN on Drosophila melanogaster, focusing on fertility, development, circadian rhythms, and gene expression. All results were compared to those of a control group maintained under a 12 h white light/12 h dark cycle.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Guangxi Key Laboratory for Agro-Environment and Agric-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
Sublethal concentrations of insecticides are commonly encountered in agricultural environments, particularly by pests such as the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), which primarily infests host plants during the larval stage. Sublethal concentrations of insecticides can elicit a wide range of effects; therefore, it is important to consider the impact of thiamethoxam, a registered control insecticide for B. dorsalis.
View Article and Find Full Text PDF