98%
921
2 minutes
20
Crosslinking of glucocorticoid-induced TNF family-related receptor (GITR) with agonist antibodies restores cancer immunity by enhancing effector T cell (Teff) responses while interfering with intra-tumor regulatory T cell (Treg) stability and/or accumulation. However, how anti-GITR antibody infusion changes T cell receptor (TCR) repertoire of Teffs and Tregs engaged in anti-tumor immune response is unclear. Here, we used a transgenic mouse model (TCRmini) where T cells express naturally generated but limited TCR repertoire to trace the fate of individual T cells recognizing B16 melanoma in tumor-bearing mice, treated or non-treated with an anti-GITR monoclonal antibody DTA-1. Analysis of TCRs of CD4 T cells from these mice revealed that the TCR repertoire of dominant tumor-reactive Teff clones remained rather similar in treated and non-treated mice. In contrast, both tumor-associated and peripheral TCR repertoire of Tregs, which were mostly distinct from that of Teffs, underwent DTA-1 mediated remodeling characterized by depletion of dominant clones and an emergence of more diverse, low-frequency clones bearing increased numbers of TCRs shared with Teffs. We conclude that the DTA-1 infusion eliminates activated Tregs engaged in the initial maintenance of tolerogenic niche for tumor growth, but over time, it favors tumor replenishment by Tregs expressing an array of TCRs able to compete with Teffs for recognition of the same tumor antigens which may prevent its complete eradication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688217 | PMC |
http://dx.doi.org/10.1007/s00005-017-0479-1 | DOI Listing |
Immune Netw
August 2025
Department of Biological Science, Ajou University, Suwon 16499, Korea.
The intestinal immune system is adapted to maintain constant interactions with environmental stimuli without causing inflammation. The recognition of Ags derived from microbes and diet can induce Treg or effector T cell responses through dynamic regulatory mechanisms, significantly impacting host health and disease. Although several examples of Ag-specific T cell responses to microbial or dietary Ags have been reported, our understanding of the full range of gut T cell responses remains highly limited.
View Article and Find Full Text PDFOsteoarthritis Cartilage
September 2025
Immunology, Immunopathology, Immunotherapy I3 Lab, Inserm UMRS 959, Sorbonne Université, Paris, France; Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. Electronic address: encarnita.mariotti@sorbonne-u
Objective: The aim of this systematic literature review was to provide a comprehensive overview of T-Cell Receptor (TCR) mediated immunity research in osteoarthritis (OA).
Design: The search was conducted in April 2024 on PubMed and Embase, following PRISMA 2020. Search was primarily based on MeSH terms, free-text was used when required.
Sci Immunol
September 2025
Laboratory of Epigenetics and Immunology, West China Institute of Women and Children's Health, NHC Key Laboratory of Chronobiology, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
Naïve T cells are maintained in a homeostatic state to preserve a stable T cell pool with diverse T cell receptor (TCR) repertoires, ensuring preparedness for priming. However, the underlying mechanisms controlling naïve T cell homeostasis and priming remain unclear. Leveraging a machine learning-based functional genetic screen, we identified () as the top factor responsible for naïve T cell homeostasis.
View Article and Find Full Text PDFbioRxiv
August 2025
Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10063, USA.
Pathogen-specific CD4 T cells undergo dynamic expansion and contraction during infection, ultimately generating memory clones that shape the subsequent immune responses. However, the influence of distinct tissue environments on the differentiation and clonal selection of polyclonal T cells remains unclear, primarily because of the technical challenges in tracking these cells in vivo. To address this question, we generated Tracking Recently Activated Cell Kinetics (TRACK) mice, a dual-recombinase fate-mapping system that enables precise spatial and temporal labeling of recently activated CD4 T cells.
View Article and Find Full Text PDFFront Immunol
September 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Ten Eleven Translocation (TET) proteins can oxidize 5-methylcytosine to generate in sequential steps oxidized forms of cytosine: 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Through their catalytic activity TET proteins promote active DNA demethylation. There are three TET proteins: TET1, TET2 and TET3.
View Article and Find Full Text PDF