Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Advanced bipolar and ultrasonic energy have demonstrated reduction of operating time and blood loss in thyroidectomy. However, these devices generate heat and thermal dispersion that may damage adjacent structures such as the recurrent laryngeal nerve (RLN). This study was designed to evaluate the safety profile of the Harmonic Focus+ (HF+) device through the evaluation of thermal injury to the RLN using different algorithms of distance and time with state of the art technology.

Methods: 25 Vietnamese pigs underwent activation of HF+ in the proximity of their RLN. They were divided into 4 groups according to activation distance (3 mm, 2 mm, 1 mm and on the RLN). Time of activation, time between tones of the ultrasonic generator, changes in the electromyographic signal using continuous nerve neuromonitoring, vocal fold mobility assessed by direct laryngoscopy and histological thermal damaged were evaluated.

Results: None of the pigs had loss of signal in the electromyography during the procedure; only one pig had isolated transient decrease in amplitude and one increase in latency. One pig had transient vocal fold paresis in the group with activation on the nerve. Evaluation of the nerves by histology and immunohistochemistry did not show significant changes attributed to thermal injury.

Conclusions: The use of ultrasonic energy close to the RLN is safe, provided that activation time does not exceed the necessary time to safely transect the tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjsurg.2017.04.013DOI Listing

Publication Analysis

Top Keywords

ultrasonic energy
12
recurrent laryngeal
8
laryngeal nerve
8
activation time
8
vocal fold
8
time
6
rln
5
activation
5
safety assessment
4
ultrasonic
4

Similar Publications

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

Defect engineering in cobalt-doped prussian blue to enhance sonocatalytic activities for anticancer treatment.

J Mater Chem B

September 2025

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

The effect of sonocatalysis on anticancer treatment is always restricted by rapid recombination of charge and low utilization of the ultrasonic cavitation effect. Herein, cobalt-doped prussian blue (PB) nanocubes were synthesized, and then they were etched by acidic solution to obtain amorphous Co-FePB@1h with abundant defects including: Fe/Co defects, Fe-(CN) vacancies, and dangling bonds. Both doping and defect engineering contribute to decreasing the band gap and promoting charge separation.

View Article and Find Full Text PDF

Objectives: This study aims to assess the efficacy and safety of five categories of intracorporeal lithotripsy devices in percutaneous nephrolithotomy (PCNL): Pneumatic lithotripters, ultrasonic lithotripters, double-probe dual-energy lithotripters, single-probe dual-energy (SPDE) lithotripters and lasers.

Methods: A network meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. PubMed, Embase and Cochrane were utilised to search for randomised controlled trials (RCTs) up to 10 August 2024.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.

View Article and Find Full Text PDF