98%
921
2 minutes
20
Purpose: To evaluate a prescan-based radiofrequency phase-correction strategy for unbalanced pseudo-continuous arterial spin labeling (pCASL) at 9.4 T in vivo and to test its robustness toward suboptimal shim conditions.
Methods: Label and control interpulse phases were optimized separately by means of two prescans in rats. The mean perfusion as well as the interhemispherical symmetry were measured for several phase combinations (optimized versus theoretical phases) to evaluate the correction quality. Interpulse phases were also optimized under degraded shim conditions (i.e., up to four times the study shim values) to test the strategy's robustness.
Results: For all tested shim conditions, the full arterial spin labeling (ASL) signal could be restored. Without any correction, the relative ASL signal was 1.4 ± 1.7%. It increased to 3.6 ± 1.4% with an optimized label phase and to 5.3 ± 1.2% with optimized label and control phases. Moreover, asymmetry between brain hemispheres, which could be as high as 100% without phase optimization, was dramatically reduced to 1 ± 3% when applying optimized label and control phases.
Conclusions: Pseudo-continuous ASL at high magnetic field is very sensitive to shim conditions. Label and control radiofrequency phase optimization based on prescans robustly maximizes the ASL signal obtained with unbalanced pCASL and minimizes the asymmetry between hemispheres. Magn Reson Med 79:1314-1324, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.26767 | DOI Listing |
Nano Lett
September 2025
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.
View Article and Find Full Text PDFBr J Dermatol
September 2025
Population Health Program, QIMR Berghofer, Brisbane, Australia.
Background: Sunscreen reduces vitamin D production in experimental studies. It is uncertain whether this translates to 'real-world' settings.
Objectives: We aimed to dtermine if routinely applying high-SPF sunscreen for one year reduces serum 25-hydroxyvitamin D [25(OH)D] concentration.
Front Nutr
August 2025
Nutrition Unit, National Agency for Food and Drug Administration and Control, Lagos, Nigeria.
Background: Food labelling policy has become increasingly important in public health due to the rising burden of diet-related diseases. This study examines the compliance of pre-packaged foods sold in Nigerian markets with national food labelling guidelines.
Methods: A total of 883 pre-packaged foods from broad categories were purposively enlisted from selected Nigerian stores and supermarkets.
Glob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFPlant Dis
September 2025
USDA-ARS US Vegetable Laboratory, U.S. Vegetable Laboratory, 2700 Savanah Hwy, Charleston, South Carolina, United States, 29414;
Green fruit anthracnose caused by the fungus Colletotrichum scovillei is an emerging disease on various types of peppers (Capsicum spp.) in the eastern United States. Sixteen cultivars, representing 11 horticultural fruit types from four species of Capsicum, C.
View Article and Find Full Text PDF