98%
921
2 minutes
20
Basal colonic crypt stem cells are long lived and play a role in colon homeostasis. Previous evidence has shown that high-calorie diet (HCD) enhances colonic stem cell numbers and expansion of the proliferative zone, an important biomarker for colon cancer. However, it is not clear how HCD drives dysregulation of colon stem cell/colonocyte proliferative kinetics. We used a human-relevant pig model and developed an immunofluorescence technique to detect and quantify colonic stem cells. Pigs ( = 8/group) were provided either standard diet (SD; 5% fat) or HCD (23% fat) for 13 weeks. HCD- and SD-consuming pigs had similar total calorie intake, serum iron, insulin, and glucose levels. However, HCD elevated both colonic proliferative zone (KI-67) and stem cell zone (ASCL-2 and BMI-1). Proliferative zone correlated with elevated innate colonic inflammatory markers TLR-4, NF-κB, IL6, and lipocalin-2 ( ≥ 0.62, = 0.02). Elevated gut bacterial phyla proteobacteria and firmicutes in HCD-consuming pigs correlated with proliferative and stem cell zone. Colonic proteome data revealed the upregulation of proteins involved in cell migration and proliferation and correlated with proliferative and stem cell zone expansion. Our study suggests that pig colon, unlike mice, has two distinct stem cells (ASCL-2 and BMI-1) similar to humans, and HCD increases expansion of colonic proliferative and stem cell zone. Thus, pig model can aid in the development of preventive strategies against gut bacterial dysbiosis and inflammation-promoted diseases, such as colon cancer. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188705 | PMC |
http://dx.doi.org/10.1158/1940-6207.CAPR-17-0010 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, Seoul, 05029, Republic of Korea.
J Mol Histol
September 2025
Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000, Shandong, China.
The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFNat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDF