Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We recently generated glutathione S-transferase (GST) A3 knockout (KO) mice as a novel model to study the risk factors for liver cancer. GSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of aflatoxin B1 (AFB1), confirming the crucial role of GSTA3 in resistance to AFB1. We now report histopathological changes, tumor formation, biochemical changes and gender response following AFB1 treatment as well as the contribution of oxidative stress. Using a protocol of weekly 0.5 mg AFB1/kg administration, we observed extensive oval (liver stem) cell (OC) proliferation within 1-3 weeks followed by microvesicular lipidosis, megahepatocytes, nuclear inclusions, cholangiomas and small nodules. Male and female GSTA3 KO mice treated with 12 and 24 weekly AFB1 injections followed by a rest period of 12 and 6 months, respectively, all had grossly distorted livers with macro- and microscopic cysts, hepatocellular nodules, cholangiomas and cholangiocarcinomas and OC proliferation. We postulate that the prolonged AFB1 treatment leads to inhibition of hepatocyte proliferation, which is compensated by OC proliferation and eventually formation of cholangiocarcinoma (CCA). At low-dose AFB1, male KO mice showed less extensive acute liver injury, OC proliferation and AFB1-DNA adducts than female KO mice. There were no significant compensatory changes in KO mice GST subunits, GST enzymatic activity, epoxide hydrolase, or CYP1A2 and CYP3A11 levels. Finally, there was a modest increase in F2-isoprostane and isofuran in KO mice that confirmed putative GSTA3 hydroperoxidase activity in vivo for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862260PMC
http://dx.doi.org/10.1093/carcin/bgx048DOI Listing

Publication Analysis

Top Keywords

liver injury
8
cell proliferation
8
glutathione s-transferase
8
mice
8
knockout mice
8
gsta3 mice
8
afb1 treatment
8
proliferation
6
afb1
6
characterization liver
4

Similar Publications

This study aimed to develop a predictive model and construct a graded nomogram to estimate the risk of severe acute kidney injury (AKI) in patients without preexisting kidney dysfunction undergoing liver transplantation (LT). Patients undergoing LT between January 2022 and June 2023 were prospectively screened. Severe AKI was defined as Kidney Disease: Improving Global Outcomes stage 3.

View Article and Find Full Text PDF

MAFLD: a ferroptotic disease.

Trends Mol Med

September 2025

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.

View Article and Find Full Text PDF

An 81-year-old man was treated with prednisolone, avacopan, and rituximab for microscopic polyangiitis and sulfamethoxazole/trimethoprim (SMX/TMP) and vonoprazan for prophylaxis. The liver enzyme levels were elevated 42 days after avacopan administration. Avacopan, SMX/TMP, and vonoprazan treatment were discontinued.

View Article and Find Full Text PDF

Neonatal Liver-Derived FTH1-Enriched Extracellular Vesicles Attenuate Ferroptosis and Ameliorate MASLD Pathogenesis.

Free Radic Biol Med

September 2025

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.

View Article and Find Full Text PDF