98%
921
2 minutes
20
The influence of drug-target binding kinetics on target occupancy can be influenced by drug distribution and diffusion around the target, often referred to as "rebinding" or "diffusion-limited binding". This gives rise to a decreased decline of the drug-target complex concentration as a result of a locally higher drug concentration that arises around the target, which leads to prolonged target exposure to the drug. This phenomenon has been approximated by the steady-state approximation, assuming a steady-state concentration around the target. Recently, a rate-limiting step approximation of drug distribution and drug-target binding has been published. However, a comparison between both approaches has not been made so far. In this study, the rate-limiting step approximation has been rewritten into the same mathematical format as the steady-state approximation in order to compare the performance of both approaches for the investigation of the influence of drug-target binding kinetics on target occupancy. While both approximations clearly indicated the importance of k and high target concentrations, it was shown that the rate-limiting step approximation is more accurate than the steady-state approximation, especially when dissociation is fast compared to association and distribution out of the binding compartment. It is therefore concluded that the new rate-limiting step approximation is to be preferred for assessing the influence of binding kinetics on local target site concentrations and target occupancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2017.05.024 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
The photocatalytic performance of d-block metal complexes with unsaturated coordination circumstances after one dative-bond cleavage has become an emerging domain. Especially, the photocatalytic CO reduction reaction (CORR) on the active center of d-block metals in tridentate/bidentate ligands with square pyramidal nitrogen-coordinated atoms has been reported. In this study, the photocatalytic CORR performance of six metals in [TM(tpy)(ppy)] as possible active candidates (TM = Fe, Co, Ru, Rh, Re, and Ir) for CO production was evaluated in detail using DFT computations.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
Integrating cross-scale active sites-single atoms (SA), atom pairs (AP), and nanoparticles-into a unified catalytic system presents a promising strategy for advancing oxygen reduction reaction (ORR), an extremely important process in energy conversion. However, the synergistic interplay among these sites and their mechanistic roles remains poorly understood. Here, we report a novel catalyst (3) featuring Zn, bonded Fe-Co with dual-oxygen ligands, and FeCo nanoparticles, synthesized via pyrolysis of a metal matrix-engineered metal-organic framework (MOF).
View Article and Find Full Text PDF