98%
921
2 minutes
20
Purpose To evaluate the associations among mathematical modeling with the use of magnetic resonance (MR) imaging-based texture features and deep myometrial invasion (DMI), lymphovascular space invasion (LVSI), and histologic high-grade endometrial carcinoma. Materials and Methods Institutional review board approval was obtained for this retrospective study. This study included 137 women with endometrial carcinomas measuring greater than 1 cm in maximal diameter who underwent 1.5-T MR imaging before hysterectomy between January 2011 and December 2015. Texture analysis was performed with commercial research software with manual delineation of a region of interest around the tumor on MR images (T2-weighted, diffusion-weighted, and dynamic contrast material-enhanced images and apparent diffusion coefficient maps). Areas under the receiver operating characteristic curve and diagnostic performance of random forest models determined by using a subset of the most relevant texture features were estimated and compared with those of independent and blinded visual assessments by three subspecialty radiologists. Results A total of 180 texture features were extracted and ultimately limited to 11 features for DMI, 12 for LVSI, and 16 for high-grade tumor for random forest modeling. With random forest models, areas under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were estimated at 0.84, 79.3%, 82.3%, 81.0%, 76.7%, and 84.4% for DMI; 0.80, 80.9%, 72.5%, 76.6%, 74.3%, and 79.4% for LVSI; and 0.83, 81.0%, 76.8%, 78.1%, 60.7%, and 90.1% for high-grade tumor, respectively. Sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of visual assessment for DMI were 84.5%, 82.3%, 83.2%, 77.7%, and 87.8% (reader 3). Conclusion The mathematical models that incorporated MR imaging-based texture features were associated with the presence of DMI, LVSI, and high-grade tumor and achieved equivalent accuracy to that of subspecialty radiologists for assessment of DMI in endometrial cancers larger than 1 cm. However, these preliminary results must be interpreted with caution until they are validated with an independent data set, because the small sample size relative to the number of features extracted may have resulted in overfitting of the models. RSNA, 2017 Online supplemental material is available for this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.2017161950 | DOI Listing |
J Immunother Cancer
September 2025
CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
Neoadjuvant immunochemotherapy (nICT) has demonstrated significant potential in improving pathological response rates and survival outcomes for patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, substantial interindividual variability in therapeutic outcomes highlights the urgent need for more precise predictive tools to guide clinical decision-making. Traditional biomarkers remain limited in both predictive performance and clinical feasibility.
View Article and Find Full Text PDFPathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.
In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Biomed Environ Sci
August 2025
School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Objective: To identify the key features of facial and tongue images associated with anemia in female populations, establish anemia risk-screening models, and evaluate their performance.
Methods: A total of 533 female participants (anemic and healthy) were recruited from Shuguang Hospital. Facial and tongue images were collected using the TFDA-1 tongue and face diagnosis instrument.