Effect of processing conditions on quality of green beans subjected to reciprocating agitation thermal processing.

Food Res Int

Department of Food Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste. Anne de Bellevue, PQ, H9X 3V9, Canada. Electronic address:

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of reciprocating agitation thermal processing (RA-TP) on quality of canned beans was evaluated in a lab-scale reciprocating retort. Green beans were selected due to their soft texture and sensitive color. Green beans (2.5cm length×0.8cm diameter) were filled into 307×409 cans with carboxylmethylcellulose (0-2%) solutions and processed at different temperatures (110-130°C) and reciprocation frequency (1-3Hz) for predetermined heating times to achieve a process lethality (F) of 10min. Products processed at higher temperatures and higher reciprocation frequencies resulted in better retention of chlorophyll and antioxidant activity. However, high reciprocation frequency also resulted in texture losses, with higher breakage of beans, increased turbidity and higher leaching. There was total loss of product quality at the highest agitation speed, especially with low viscosity covering solutions. Results suggest that reciprocating agitation frequency needs to be adequately moderated to get the best quality. For getting best quality, particularly for canned liquid particulate foods with soft particulates and those susceptible to high impact agitation, a gentle reciprocating motion (~1Hz) would be a good compromise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2015.08.040DOI Listing

Publication Analysis

Top Keywords

green beans
12
reciprocating agitation
12
agitation thermal
8
thermal processing
8
quality canned
8
reciprocation frequency
8
best quality
8
quality
5
beans
5
reciprocating
5

Similar Publications

Coffee plants and beans are prone to fungal contamination that pose health risks to consumers by producing mycotoxins like ochratoxin A (OTA). Thus, the present study aimed to analyze the mycobiota of Costa Rican coffee beans, focusing on potentially ochratoxigenic species and their in vitro susceptibility patterns to antifungal agents. Fungal isolates were obtained from cherry, green, and roasted coffee beans from Costa Rica; they were identified by morphology, MALDI-TOF technology, and sequencing.

View Article and Find Full Text PDF

An updated gradient PLE-SPE×HPLC-PDA system for the extraction, concentration, fractionation, and analysis of valuable compounds from cocoa bean shells.

Food Chem

September 2025

Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, Sao Paulo, Brazil. Electronic address:

Cocoa (Theobroma cacao L.) beans are extensively employed in the food industry. However, their shells (CBS), a by-product representing about 20 % of bean weight, contain valuable bioactive compounds such as phenolic compounds and methylxanthines.

View Article and Find Full Text PDF

Yunnan coffee is praised for the sweet caramel aroma and slightly sour taste, but its key flavor compounds and aroma formation mechanisms remain unclear. In this study, the dynamic changes of coffee aroma, amino acids, free fatty acids, free sugars, chlorogenic acids and caffeine at different roasting degrees were investigated by SAFE-GC-MS and HPLC. Roasted coffees exhibited richer flavor profiles, especially caramel, nutty and roasted flavors, while the grassy, cereal and beany flavors of green beans (GB) were significantly diminished.

View Article and Find Full Text PDF

This study compared two nontargeted analytical techniques-headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC × GC-MS)-to fingerprint the volatile organic compounds (VOCs) of green beans from Ethiopia, Brazil, Nicaragua, and Guatemala. HS-GC-IMS enabled rapid differentiation of samples, detecting VOC signal regions that effectively clustered samples by origin with minimal preparation. GC × GC-MS offered higher chemical resolution, identifying 98 compounds, including methoxypyrazines, aldehydes, and alcohols, which significantly contributed to interorigin variability.

View Article and Find Full Text PDF

The relatively low lipid content of Robusta coffee is a major factor contributing to its monotonous aroma profile. In this study, Robusta green coffee beans were pretreated with ultrasound-assisted oil-solvent (coconut oil/palm oil/butter/camellia oil/walnut oil) to regulate the formation of aroma compounds during roasting by modifying their lipid composition, thereby enhancing the aroma profile of Robusta coffee. Lipidomic analysis showed that pretreatment significantly increased total lipid content and remodeled fatty acids and lipid molecules, with butter and coconut oil yielding the strongest effects.

View Article and Find Full Text PDF