Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

[Image: see text]

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598901PMC
http://dx.doi.org/10.1007/s12250-016-3935-xDOI Listing

Publication Analysis

Top Keywords

human rhinovirus
4
rhinovirus infection
4
infection associated
4
associated asthma
4
asthma children
4
children determined
4
determined xtag
4
xtag respiratory
4
respiratory viral
4
viral panel
4

Similar Publications

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF

Beyond respiratory syncytial virus and rhinovirus: The other viral respiratory bandits.

Ann Allergy Asthma Immunol

September 2025

Arkansas Children's Research Institute, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas. Electronic address:

Asthma affects approximately 25 million people in the United States, with respiratory viruses playing a significant role in both the onset and exacerbations of the condition. Although rhinovirus and respiratory syncytial virus (RSV) are the most well-known triggers, other iratory viruses playing a significant role in both the on, human parainfluenza virus, human bocavirus, enterovirus D68, influenza, and SARS-CoV-2 are increasingly recognized for their significant impact on asthma. These viruses contribute to both the development of asthma and exacerbations by inducing airway inflammation, disrupting epithelial barriers, and skewing immune responses-particularly toward type 2 inflammation.

View Article and Find Full Text PDF

Sewage surveillance revealed the emergence and prevalence of human rhinovirus and human parainfluenza virus in China based on their fecal shedding rates.

Water Res

August 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China; The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laborat

Human parainfluenza virus (HPIV) and human rhinovirus (HRV) significantly contribute to acute respiratory tract infections (ARIs), especially in children. Wastewater surveillance (WWS) is a valuable tool for monitoring these viruses, but limited understanding of their fecal shedding patterns restricts the broader application of WWS. This study aimed to investigate fecal shedding dynamics of HPIV and HRV for developing a mass-balance model to predict infection prevalence, and conduct wastewater sequencing to explore genetic diversity.

View Article and Find Full Text PDF

Introduction: Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are common viral etiologies of respiratory infections. Although co-infection with other respiratory pathogens is frequently observed, its clinical significance remains unclear.

Methods: We retrospectively analyzed 57,746 patients who underwent FILMARRAY®, a comprehensive multiplex polymerase chain reaction testing, between November 2020 and March 2023.

View Article and Find Full Text PDF

Enteroviruses initiate genomic replication via a highly conserved mechanism that is controlled by an RNA platform, also known as the 5' cloverleaf (5'CL). Here, we present a biophysical analysis of the 5'CL conformation of three enterovirus serotypes under various ionic conditions, utilizing CD spectroscopy, size-exclusion chromatography, and small-angle X-ray scattering. In general, a tendency toward a smaller monomeric hydrodynamic radius in the presence of salts was observed, but the exact structural signature of each 5'CL varied depending upon the serotype.

View Article and Find Full Text PDF