Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Foam cells are formed when macrophages imbibe low-density lipoprotein (LDL) through scavenger receptors. Here we examined how epigallocatechin-3-gallate (EGCG) influences foam cell formation. We found that EGCG dose-dependently reduced oxidized LDL (oxLDL) uptake in THP-1 (10 μM, 20.0 ± 0.50, p < 0.05) and primary macrophages (134.6 ± 15.6, p < 0.05) and reduced intracellular cholesterol content in these cells, respectively (10 μM, 32.6 ± 0.14, p < 0.05; 31.7 ± 1.26, p < 0.05). EGCG treatment decreased scavenger receptor A expression, but not the expression of CD36 or of reverse cholesterol transporters. Moreover, EGCG stimulated translocation of the p50 and p65 subunits of NF-κB and enhanced NF-κB DNA-binding activity, thus suppressing SR-A promoter activity. EGCG's suppression of SR-A expression was blocked by the NF-κB inhibitor Bay. The present findings suggest that EGCG regulates NF-κB activity and thus suppresses SR-A expression, oxLDL uptake, and foam cell formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.6b05832DOI Listing

Publication Analysis

Top Keywords

foam cell
12
cell formation
12
scavenger receptor
8
receptor expression
8
oxldl uptake
8
sr-a expression
8
expression
5
egcg
5
epigallocatechin-3-gallate reduces
4
reduces scavenger
4

Similar Publications

With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.

View Article and Find Full Text PDF

The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.

View Article and Find Full Text PDF

Introduction: Not all wound patients are candidates for surgical debridement. A felted, reticulated open cell foam with an array of 10 mm holes (VFCC) for use with instillation therapy has been used to eliminate non-viable tissue from patient wound beds. The mechanisms for this have not been fully elucidated.

View Article and Find Full Text PDF

The development of controllable nanoplatforms with disease-specific responsiveness and programmable therapeutic functions is vital for treating complex cardiovascular diseases such as atherosclerosis. Herein, we present an intelligent, next-generation nanoplatform (HALA@AgS) that integrates enzyme-responsive dual-drug delivery with NIR-II imaging-guided photothermal therapy (PTT), enabling triple-stimuli synergy of enzyme, light, and multi-drug co-activation. This modular design enables stable nanoassemblies with high drug-loading capacity and selective disassembly in enzyme-rich plaque microenvironments, achieving controlled dual-drug release exceeding 80 % within 72 h.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a significant contributor to cardiovascular events. Recent studies have demonstrated that ferroptosis of foam cells is a significant driver of AS. Nevertheless, insights into the precise antiferroptosis therapies remain limited.

View Article and Find Full Text PDF