Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microcapsules with high mechanical stability and elasticity are desirable in a variety of contexts. We report a single-step method to fabricate such microcapsules by microfluidic interfacial complexation between high stiffness cellulose nanofibrils (CNF) and an oil-soluble cationic random copolymer. Single-capsule compression measurements reveal an elastic modulus of 53 MPa for the CNF-based capsule shell with complete recovery of deformation from strains as large as 19%. We demonstrate the ability to manipulate the shell modulus by the use of polyacrylic acid (PAA) as a binder material, and observe a direct relationship between the shell modulus and the PAA concentration, with moduli as large as 0.5 GPa attained. These results demonstrate that CNF incorporation provides a facile route for producing strong yet flexible microcapsule shells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00092hDOI Listing

Publication Analysis

Top Keywords

cellulose nanofibrils
8
shell modulus
8
highly stiff
4
stiff elastic
4
elastic microcapsules
4
microcapsules incorporating
4
incorporating cellulose
4
nanofibrils microcapsules
4
microcapsules high
4
high mechanical
4

Similar Publications

High wet-strength MXene/lignin-containing cellulose nanofibrils composite films with Janus structure for electromagnetic shielding and Joule heating.

Int J Biol Macromol

September 2025

State Key Laboratory of Advanced Paper making and Paper-based Materials, South China University of Technology, Guangzhou, Guangdong Province, 510640, PR China.

Developing MXene-based electromagnetic interference (EMI) shielding composite films with exceptional wet mechanical properties is crucial to address the limitation of conventional MXene-based EMI shielding composite films in humid environments. Herein, we present a fabrication strategy for Janus-structured MXene-based EMI shielding composite films with exceptional wet mechanical and Joule heating performances. Through depositing tannic acid-modified MXene (TM) on maleic anhydride-modified lignin-containing cellulose nanofibril (MLCNF) film using a scalable vacuum filtration and hot-pressing strategy.

View Article and Find Full Text PDF

Pressure ulcer (PU) cause metabolic disorders and ischemia via prolonged pressure, leading to secondary infection, inflammation, and vascular neuropathy. However, existing therapies rely on microenvironment, HO, low repair efficiency, and lack efficient collaborative therapy. Herein, a confined multifunctional TiO/Pt nanozyme is developed via atomic layer deposition for PUs repair.

View Article and Find Full Text PDF

Advancements in Chitosan and Cellulose Nanoparticles for Stem Cell-Based Tissue Engineering.

Stem Cell Rev Rep

September 2025

Medical Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, 51001, Iraq.

Stem cell-based tissue engineering offers transformative solutions for regenerating damaged tissues, such as bone, cartilage, and neural tissues. Chitosan and cellulose nanoparticles have emerged as promising biomaterials for enhancing stem cell delivery and scaffold performance due to their biocompatibility, biodegradability, and tunable properties. Chitosan, with its antimicrobial and bioadhesive properties, supports stem cell adhesion and differentiation in soft tissue scaffolds.

View Article and Find Full Text PDF

Single-step bleaching versus organosolv-bleaching of sugarcane bagasse: tuning TEMPO-oxidized nanocellulose morphology via delignification strategy.

Int J Biol Macromol

September 2025

Universidade Estadual de Campinas - UNICAMP, Instituto de Química, 13083-970 Campinas, SP, Brazil. Electronic address:

TEMPO-mediated oxidation is an effective and widely used method for producing carboxylated cellulose nanofibrils (CNFs) from lignocellulosic substrates. However, the morphology of the resulting nanocelluloses can vary significantly when TEMPO oxidation is applied to sugarcane bagasse (SCB) substrates with minimal lignin content, depending on the amount of oxidizing agent used. This work elucidates strategies for tailoring nanocellulose morphology from SCB by TEMPO oxidation and reveals the effect of a delignification step prior to bleaching on nanocellulose properties.

View Article and Find Full Text PDF

Cellulose nanofibrils (CNFs) produced via deep eutectic solvent (DES) pretreatment were used, for the first time, to prepare composite films/nanopapers with fibrous clays (sepiolite and palygorskite). Highly transparent films containing up to 50% clay were successfully obtained, avoiding energy-intensive homogenization processes and clay chemical modifications, with absolute transparency losses relative to the transparency of the neat CNF film of ∼15% for 50% sepiolite. Higher transparency losses were found for TEMPO-oxidized CNF and cationic CNF composite films prepared for comparison purposes.

View Article and Find Full Text PDF