Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineered hypertrophic cartilage (HC) represents an attractive bone substitute material, capable to induce bone formation by endochondral ossification. Since bone formation by HC depends on factors released from the extracellular matrix, in this study, we hypothesized that HC seeding with monocytes committed to osteoclastogenesis could enhance its remodeling, improve chemotaxis of skeletal and vascular cells, and consequently enhance bone formation. This would be particularly relevant for devitalized HC, which currently exhibits only limited osteoinductivity. Living or devitalized HC engineered from human bone marrow-derived mesenchymal stromal cells (MSCs) was seeded or not with human monocytes in the presence of macrophage colony-stimulating factor and RANK-ligand, cultured for up to 15 days, or implanted ectopically in nude mice. Monocytes seeded on devitalized, but not living, HC induced its in vitro resorption, resulting in 30-fold higher release and 2.7-fold lower content of glycosaminoglycans compared with unseeded samples. In vitro, supernatants from monocyte-seeded devitalized HC attracted more monocytes compared with unseeded samples, but did not enhance chemotaxis of MSCs or human umbilical vein endothelial cells. In vivo, however, neither remodeling nor invasion by osteoclasts, endothelial cells, and mouse MSCs were significantly affected by the seeding with monocytes. Finally, in vitro priming of living or devitalized HC by monocytes did not enhance their bone-forming capacity. Further investigations should test the proposed approach on HC engineered to prevent rapid degradation and support osteoclastogenesis, or identify alternative strategies to enhance engineered HC remodeling and bone-forming capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2016.0553DOI Listing

Publication Analysis

Top Keywords

bone formation
12
monocytes seeded
8
engineered hypertrophic
8
hypertrophic cartilage
8
endochondral ossification
8
seeding monocytes
8
living devitalized
8
compared unseeded
8
unseeded samples
8
endothelial cells
8

Similar Publications

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.

BME Front

September 2025

State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.

View Article and Find Full Text PDF

Progress in immunoregulatory mechanisms during distraction osteogenesis.

Front Bioeng Biotechnol

August 2025

Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.

Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF