98%
921
2 minutes
20
Background And Aims: Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia.
Methods: Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses.
Key Results: Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation.
Conclusions: Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604565 | PMC |
http://dx.doi.org/10.1093/aob/mcx022 | DOI Listing |
Mol Biotechnol
September 2025
NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia.
In agriculture, biosecurity, and human health, the rapid and accurate detection of pathogens and pests is crucial. Our study investigates the sensitivity and practicality of six guide RNA (gRNA) production methods for use in Nanopore Cas9-targeted sequencing (nCATS), focusing on their implications for multiplexed pathogen and pest detection. Each production method generated a library of eight gRNAs capable of excising ~ 1.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
University of Southampton, Southampton, Hampshire, UK.
Potatoes are a global staple, yet their nutritional potential is underutilized. This study evaluates the biochemical and nutritional composition of Solanum okadae (S. okadae), a wild diploid potato species, compared to the cultivated S.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Universidade Federal do Pampa, Campus São Gabriel-São Gabriel, São Gabriel, Brazil.
Background: Fertilization of plants with selenium (Se) can enhance their resistance to abiotic stresses and improve human health and nutrition. However, Se fertilization in olive trees remains underexplored. This study evaluated the effect of foliar sodium selenite fertilization on leaf Se content, oxidative stress, olive tree productivity, biofortification of extra virgin olive oils (EVOO), and their physicochemical and antioxidant attributes in two mature 'Arbequina' olive orchards.
View Article and Find Full Text PDFPest Manag Sci
September 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDF