Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Therapeutic potential of adipose derived stem cells (ADSCs) has widely been explored for treatment of orthopedic ailments. Transplantation of cells encapsulated in a scaffold facilitates 3 dimensional modelling of the tissue for the cases where well-defined spatial distribution of cells is desired for implantation. Present study aims to encapsulate canine ADSCs (cADSCs) in biodegradable methacrylated gelatin gel (GelMA) scaffold followed by their osteogenic differentiation for fabrication of a three dimensional bone tissue construct. Different percentages (5, 10 and 20%) and different methacrylation levels of gel (GelMA and GelMA) were tested for degradation. Porosity of 10% GelMA was compared by SEM imaging. Gels with the fastest degradation rate (5% GelMA and GelMA) were chosen for cell encapsulation since degradation of scaffold is of prime importance when the gel is intended to be used for implantation. Finally, cADSCs encapsulated in 5% GelMA demonstrated best morphology and were differentiated osteogenically. We developed a modified protocol for isolation of RNA from cells encapsulated in GelMA. Osteogenic differentiation was affirmed by the presence of osteo-specific gene expression by reverse transcriptase PCR in addition to von Kossa staining of the construct. GelMA is an excellent biodegradable scaffold for encapsulation of cADSCs without altering their osteogenic potential. This osteo-induced cellular scaffold implant opens a new therapeutic horizon in the area of tissue engineering in orthopedics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gelma
9
bone tissue
8
tissue engineering
8
stem cells
8
cells encapsulated
8
gel gelma
8
osteogenic differentiation
8
gelma gelma
8
encapsulated gelma
8
scaffold
6

Similar Publications

Radiation-induced skin injury (RSI) remains a significant clinical challenge due to persistent oxidative stress, chronic inflammation, and impaired tissue regeneration. It is demonstrated that RSI is accompanied by dysregulation of the immune microenvironment, wherein macrophages act as key regulators of all pathological cascades. Here, we developed a dual network hydrogel (Gel/SA@MXene) through dual cross-linking via UV irradiation and calcium ions to accelerate radiation-combined wound healing.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF

Umbilical cord blood-derived exosomes deliver miR-182-5p to Therapeutically target the MYD88/NF-κB signaling pathway in rat peri-implantitis.

Mater Today Bio

October 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Peri-implantitis (PI) is a major cause of implant restoration failure, necessitating therapeutic strategies that integrate bone regeneration and anti-inflammatory effects. Despite advances in treatment, no existing agents simultaneously address both objectives. Exosomes (Exos), as key mediators of intercellular communication, have demonstrated dual anti-inflammatory and osteogenic capacities through microRNA (miRNA) delivery; however, their potential in PI therapy remains unexplored.

View Article and Find Full Text PDF

Combining disinfection and bone regeneration in a one-step treatment is of significant clinical importance for chronic osteomyelitis, yet it remains a considerable challenge. To address this, we developed a dual stimulus-responsive decellularized extracellular matrix (dECM) cryogel (GC-dECM@CPN). The cryogel is composed of methacrylate gelatin (GelMA), carboxymethyl chitosan (CMCS), dECM, and temperature-sensitive phase-transition copper peroxide nanoparticles (CPNs).

View Article and Find Full Text PDF

Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.

View Article and Find Full Text PDF