98%
921
2 minutes
20
Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201606578 | DOI Listing |
Wounds
August 2025
Department of Day Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorder, Chongqing, China; China International Science and Technology Coopera
Background: Current management of pediatric cutaneous abscesses involves either spontaneous healing by secondary intention or suturing through tertiary intention, which are often lengthy processes that cause discomfort and distress among children. As it is noninvasive and simple, a novel zipper device is widely used for the primary wound closure of surgical incisions.
Objective: To describe the effectiveness of novel zipper device use for pediatric cutaneous abscess wound closure in an outpatient context.
Wounds
August 2025
Department of Nursing, Federal University of Ceará, Ceará, Brazil.
Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.
Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.
MAGMA
September 2025
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.
Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.
Sports Med
September 2025
Aspetar Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar.
Sports injury surveillance programs have been vital in advancing the understanding of injury epidemiology across various athlete populations. Surveillance-based epidemiological measures of injury occurrence are ubiquitous in the sports medicine literature, and the injury rate is one such commonly used measure. Traditional approaches to calculating injury rates have predominantly relied on frequentist methods, which, while informative, have limitations in addressing certain practical questions.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.
A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.
View Article and Find Full Text PDF