98%
921
2 minutes
20
The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2017.02.005 | DOI Listing |
Anal Bioanal Chem
September 2025
Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
Latent autoimmune diabetes in adults (LADA) is a slowly progressing form of diabetes that develops in adulthood, characterized by autoimmune destruction of pancreatic β-cells and subsequent insulin deficiency, akin to type 1 diabetes (T1D). Due to its shared genetic, immunological, and metabolic features with both T1D and type 2 diabetes (T2D), LADA is frequently misdiagnosed and inappropriately treated as T2D. To address this, we developed the A.
View Article and Find Full Text PDFPancreatology
August 2025
Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China. Electronic address:
Background: Pancreatic ductal adenocarcinoma (PDAC), the predominant form of pancreatic cancer, remains a therapeutic challenge. While GALNT4 (a member of the N-acetylgalactosaminyltransferases family) shows significant upregulation in PDAC cells, its precise oncogenic mechanisms remain poorly understood.
Methods: Bioinformatics analysis was performed to examine the expression of GALNT4 and MUC1 in pancreatic adenocarcinoma (PAAD) and to predict the glycosylation sites of MUC1.
Planta
September 2025
Plant Sciences and Agro-Technology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
The Fabaceae-specific review highlights the structural, functional, and phylogenetic diversity of UGTs, revealing clade-specific glycosylation mechanisms and novel sugar conjugations that contribute to legume adaptability. These insights offer promising avenues for metabolic engineering and stress-resilient crop development. UDP-glycosyltransferases (UGTs) are the biocatalysts modifying small molecules through glycosylation to enhance their solubility, stability, and bioactivity.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
In both native and engineered tissues, the extracellular matrix (ECM) supports and regulates nearly all aspects of cellular pathophysiology, and in response, cells extensively remodel their surrounding extracellular environments through new ECM protein deposition. Understanding this intricate bi-directional cell-ECM interaction is key to tissue engineering, but it remains challenging to investigate. This is partly due to the limited sensitivity of conventional proteomics to capture low-abundance newly synthesized ECM (newsECM).
View Article and Find Full Text PDFAntiviral Res
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of E
Feline interferon-ω2 (FeIFN-ω2) holds potential as a therapeutic agent against feline viral infections. However, its clinical application is limited by rapid clearance and suboptimal antiviral effectiveness. Thus, in this study, an Fc-fused construct, FeIFN-ω2-Fc, was engineered to improve antiviral potency and pharmacokinetic properties both in vitro and in vivo.
View Article and Find Full Text PDF