Influence of Weak Base Addition to Hole-Collecting Buffer Layers in Polymer:Fullerene Solar Cells.

Molecules

Organic Nanoelectronics Laboratory and KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN) were added to solutions of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.74 (AN = 0 mol% ) to pH = 4.24 (AN = 1.8 mol %). The electrical conductivity of the PEDOT:PSS-AN films did not change much with the pH value, while the ratio of conductivity between out-of-plane and in-plane directions was dependent on the pH of solutions. The highest power conversion efficiency (PCE) was obtained at pH = 2.52, even though all devices with the PEDOT:PSS-AN layers exhibited better PCE than those with the pristine PEDOT:PSS layers. Atomic force microscopy investigation revealed that the size of PEDOT:PSS domains became smaller as the pH increased. The stability test for 100 h illumination under one sun condition disclosed that the PCE decay was relatively slower for the devices with the PEDOT:PSS-AN layers than for those with pristine PEDOT:PSS layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155644PMC
http://dx.doi.org/10.3390/molecules22020262DOI Listing

Publication Analysis

Top Keywords

weak base
12
base addition
8
polymerfullerene solar
8
solar cells
8
devices pedotpss-an
8
pedotpss-an layers
8
pristine pedotpss
8
pedotpss layers
8
layers
6
pedotpss
5

Similar Publications

Computationally Efficient Yet Quantitatively Accurate Scaled MP2 Protocols for the Prediction of Weak Interaction Energies in Complex Biological Systems.

ACS Omega

September 2025

Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.

In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.

View Article and Find Full Text PDF

Gene-environment (GxE) interactions crucially contribute to complex phenotypes. The statistical power of a GxE interaction study is limited mainly due to weak GxE interaction effect sizes. Joint tests of the main genetic and GxE effects for a univariate phenotype were proposed to utilize the individually weak GxE effects to improve the discovery of associated genetic loci.

View Article and Find Full Text PDF

Background: Tackling climate change, together with improving indoor air quality, offers a significant opportunity to improve residents' health and well-being. This requires the evidence base to inform an energy-efficient retrofit design.

Objectives: (i) To develop a protocol that could be implemented by local authorities across a range of housing typologies and (ii) to deploy this protocol to establish baseline conditions in  = 30 homes ahead of energy-efficient retrofitting.

View Article and Find Full Text PDF

Understanding the mechanism of action of graphene oxide (GO)-based lubrication materials is of great significance to effectively suppress the surface damage accumulation of bearing steel during service. However, GO typically exhibits weak interfacial adsorption and poor dispersion stability, severely limiting its ability to form a dynamic tribofilm during friction. In this study, we synthesized an efficient lubricant, oleylamine-grafted chlorinated graphene (OA/Cl-GO), using GO as the carrier and introducing lipophilic terminal groups through chlorination and interfacial covalent modification.

View Article and Find Full Text PDF

In this work, we develop a new ensemble learning framework, (mRaSE), for multi-label classification. Given a base classifier (e.g.

View Article and Find Full Text PDF