Publications by authors named "Myeonghun Song"

Here, we report flexible thermal sensors based on organic field-effect transistors (OFETs) that are fabricated using polymeric channel and gate-insulating layers on flexible polymer film substrates. Poly(3-hexylthiophene) and poly(methyl methacrylate) were used as the channel and gate-insulating layers, respectively, whereas indium-tin oxide-coated poly(ethylene naphthalate) films (thickness = 130 μm) were employed as the flexible substrates. Aluminum-coated polymer films were attached on top of the channel parts in the flexible OFETs to block any influence by light illumination.

View Article and Find Full Text PDF

Ultrasensitive flexible sensors with multi-sensing functions are required for various applications in flexible electronics era. Here we demonstrate flexible polymer-dispersed liquid crystal (PDLC)-integrated-organic field-effect transistors (OFETs) (PDLC-i-OFETs), which sensitively respond to various stimulations including weak gas (air) flow, direct physical touch, light, and heat. The flexible PDLC-i-OFETs were fabricated by spin-coating the poly(methyl methacrylate) (PMMA)-dispersed 4,4'-pentyl-cyanobiphenyl (5CB) layers on the poly(3-hexylthiophene) (P3HT) channel layers of OFETs with 200 μm-thick poly(ethylene naphthalate) (PEN) substrates.

View Article and Find Full Text PDF

We report the effect of weak base addition to acidic polymer hole-collecting layers in normal-type polymer:fullerene solar cells. Varying amounts of the weak base aniline (AN) were added to solutions of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The acidity of the aniline-added PEDOT:PSS solutions gradually decreased from pH = 1.

View Article and Find Full Text PDF

We report the composition effect of polymeric sensing channel layers on the performance of all-polymer phototransistors featuring bulk heterojunction (BHJ) structure of electron-donating (p-type) and electron-accepting (n-type) polymers. As an n-type component, poly(3-hexylthiopehe-co-benzothiadiazole) end-capped with 4-hexylthiophene (THBT-4ht) was synthesized via two-step reactions. A well-studied conjugated polymer, poly(3-hexylthiophene) (P3HT), was employed as a p-type polymer.

View Article and Find Full Text PDF

Organic thermoelectric devices (OTEDs) are recognized one of the next generation energy conversion platforms because of their huge potentials for securing electricity continuously from even tiny heat sources in our daily life. The advantage of OTEDs can be attributable to the design freedom in device shapes and the low-cost fabrication by employing solution coating processes at low temperatures. As one of the major OTE materials to date, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been used, but no study has been yet carried out on its acidity control even though the acidic components in OTEDs can seriously affect the device performance upon operation.

View Article and Find Full Text PDF

We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains.

View Article and Find Full Text PDF

We present the spin dynamics of isolated donor electrons in phosphorus-doped silicon at low temperature and in a high magnetic field. We performed a steady-state electron spin resonance (ESR) on the sample with a dopant concentration of 6.5 × 10(16) cm(- 3) in a high field of 2.

View Article and Find Full Text PDF