Heme Assimilation in Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3.

J Biol Chem

From the Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA-tagged allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA re-localizes to the vacuolar membrane. Inactivation of , encoding a vacuolar membrane transporter, results in Δ Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In Δ Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5377804PMC
http://dx.doi.org/10.1074/jbc.M117.776807DOI Listing

Publication Analysis

Top Keywords

vacuolar membrane
12
transporter abc3
8
mutant cells
8
znmp accumulates
8
accumulates vacuoles
8
cell surface
8
hemin concentrations
8
membrane transporter
8
hemin
6
heme
5

Similar Publications

ATG16L1 controls mammalian vacuolar proton ATPase.

J Cell Biol

October 2025

Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.

The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.

View Article and Find Full Text PDF

Background: Glyphosate resistance in Conyza canadensis (Canada fleabane) has been primarily attributed to non-target-site resistance (NTSR) mechanisms such as vacuolar sequestration, though these have not been formally elucidated. While a target-site mutation at EPSPS2 (P106S) was recently identified, it failed to account for many resistant cases. These findings underscore the need to re-evaluate the genetic basis of glyphosate resistance in this species.

View Article and Find Full Text PDF

Alpha-Synuclein (αSyn), a hallmark protein of synucleinopathies such as Parkinson's disease, is likely to be involved in neuronal membrane trafficking and synaptic vesicle dynamics at axon terminals. Its specific binding to anionic phospholipids, such as phosphatidylinositol phosphates (PIPs) that are essential for intracellular signaling and membrane trafficking, suggests an involvement in vesicular transport processes. In Saccharomyces cerevisiae, a model organism for cell biological PD research, human αSyn localises to the plasma membrane via the secretory machinery.

View Article and Find Full Text PDF

BLTP2/KIAA0100, a bridge-like lipid transfer protein, was reported to localize at contacts of the ER with either the plasma membrane (PM) or recycling tubular endosomes depending on the cell type. Our findings suggest that mediating bulk lipid transport between the ER and the PM is a key function of this protein, as BLTP2 tethers the ER to tubular endosomes only after they become continuous with the PM and that it also tethers the ER to macropinosomes in the process of fusing with the PM. We further identify interactions underlying binding of BLTP2 to the PM, including phosphoinositides, the adaptor proteins FAM102A/FAM102B, and N-BAR domain proteins at membrane-connected tubules.

View Article and Find Full Text PDF

Malaria, caused by intracellular parasites, remains a major global health concern. These parasites reside and replicate within a vacuole in host red blood cells. Egress of daughter parasites out of the vacuolar and host membranes is tightly regulated via a complex mechanism.

View Article and Find Full Text PDF