Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acquired energetic resources allocated to a particular trait cannot then be re-allocated to a different trait. This often results in a trade-off between survival and reproduction for the adults of many species, but such a trade-off may be manifested differently in juveniles not yet capable of reproduction. Whereas adults may allocate resources to current and/or future reproduction, juveniles can only allocate to future reproduction. Thus, juveniles should allocate resources toward traits that increase survival and their chances of future reproductive success. We manipulated allocation of resources to performance, via endurance exercise training, to examine trade-offs among endurance capacity, immune function and growth in juvenile green anole lizards. We trained male and female captive anoles on a treadmill for 8 weeks, with increasing intensity, and compared traits with those of untrained individuals. Our results show that training enhanced endurance capacity equally in both sexes, but immune function was suppressed only in females. Training had no effect on growth, but males had higher growth rates than females. Previous work showed that trained adults have enhanced growth, so juvenile growth is either insensitive to stimulation with exercise, or they are already growing at maximal rates. Our results add to a growing body of literature indicating that locomotor performance is an important part of life-history trade-offs that are sex and age specific.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.153767DOI Listing

Publication Analysis

Top Keywords

immune function
12
growth juvenile
12
exercise training
8
trade-offs endurance
8
reproduction adults
8
allocate resources
8
future reproduction
8
reproduction juveniles
8
juveniles allocate
8
endurance capacity
8

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Background: Gastric cancer is one of the most common cancers worldwide, with its prognosis influenced by factors such as tumor clinical stage, histological type, and the patient's overall health. Recent studies highlight the critical role of lymphatic endothelial cells (LECs) in the tumor microenvironment. Perturbations in LEC function in gastric cancer, marked by aberrant activation or damage, disrupt lymphatic fluid dynamics and impede immune cell infiltration, thereby modulating tumor progression and patient prognosis.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.

View Article and Find Full Text PDF