Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advanced oxidation processes (AOPs), such as hydroxyl radical (HO)- and sulfate radical (SO)-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO- and SO-mediated oxidation. In the UV/HO process, a simplified kinetic model involving only steady state concentrations of HO and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO in the removal of PPCPs. In the UV/KSO process, the calculated steady state concentrations of CO and bromine radicals (Br, Br and BrCl) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO, respectively. The kinetic model, involving both SO and CO as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO could lead to overestimations of the removal efficiencies of the SO-mediated oxidation of nitroimidazoles in wastewater effluents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b05536DOI Listing

Publication Analysis

Top Keywords

wastewater effluents
12
so-mediated oxidation
12
removal ppcps
12
kinetic model
8
model involving
8
steady state
8
state concentrations
8
predicting removal
8
ppcps
6
oxidation
5

Similar Publications

Environmental Radiological Monitoring and Risk Assessment in Shale Gas Areas.

Environ Res

September 2025

College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan,P.R.China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, P.R.China.

Naturally occurring radioactive materials (NORM) are present in waste generated during shale gas drilling activities and pose potential risks to the environment, drawing increasing public and scientific attention. In this study, soil, wastewater and effluent samples were collected across multiple operational stages of shale gas development in Southwest China. A combination of in-situ gamma absorbed dose rate in air, soil radon concentration, radionuclide activity concentrations, and conventional hazard indices was used to evaluate environmental radioactivity and potential occupational exposure.

View Article and Find Full Text PDF

Seasonal patterns of viromes in urban aquatic environments of Manitoba.

Appl Environ Microbiol

September 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

Unlabelled: Although wastewater treatment plants harbor many pathogens, traditional methods that monitor the microbial quality of surface water and wastewater have not changed since the early 1900s and often disregard the presence of other types of significant waterborne pathogens such as viruses. We used metagenomics and quantitative PCR to assess the taxonomy, functional profiling, and seasonal patterns of DNA and RNA viruses, including the virome distribution in aquatic environments receiving wastewater discharges. Environmental water samples were collected at 11 locations in Winnipeg, Manitoba, along the Red and Assiniboine rivers during the Spring, Summer, and Fall 2021.

View Article and Find Full Text PDF

The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.

View Article and Find Full Text PDF

A polydopamine-glued g-CN/CoFeWO membrane, prepared one-pot synthesis, achieves complete sulfamethoxazole degradation through synergistic photocatalysis and PMS activation. It exhibits robust stability over 10 hours of continuous operation, maintaining high efficiency (97%) even in real municipal wastewater effluent, offering a novel and promising water purification strategy.

View Article and Find Full Text PDF

Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).

View Article and Find Full Text PDF