Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Necroptosis is a form of programmed cell death defined by activation of the kinase receptor interacting protein kinase 3 and its downstream effector, the pseudokinase mixed lineage kinase domain-like (MLKL). Activated MLKL translocates to the cell membrane and disrupts it, leading to loss of cellular ion homeostasis. In this study, we use a system in which this event can be specifically triggered by a small-molecule ligand to show that MLKL activation is sufficient to induce the processing and release of bioactive IL-1β. MLKL activation triggers potassium efflux and assembly of the NLRP3 inflammasome, which is required for the processing and activity of IL-1β released during necroptosis. Notably, MLKL activation also causes cell membrane disruption, which allows efficient release of IL-1β independently of the recently described pyroptotic effector gasdermin-D. Taken together, our findings indicate that MLKL is an endogenous activator of the NLRP3 inflammasome, and that MLKL activation provides a mechanism for concurrent processing and release of IL-1β independently of gasdermin-D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321867PMC
http://dx.doi.org/10.4049/jimmunol.1601757DOI Listing

Publication Analysis

Top Keywords

mlkl activation
20
processing release
12
release il-1β
12
il-1β independently
12
mlkl
8
activation triggers
8
independently gasdermin-d
8
cell membrane
8
nlrp3 inflammasome
8
il-1β
5

Similar Publications

Objectives: To investigate the effects of formulated granules of (TGY) on motor deficits in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute Parkinson's disease (PD) and explore the possible molecular mechanisms.

Methods: Ninety C57BL/6 mice were randomized equally into 6 groups, including a control group, a PD model group, a NEC-1 (6.5 mg/kg) treatment group, two TGY treatment groups at 5 and 2.

View Article and Find Full Text PDF

MLKL PARylation in the endothelial niche triggers angiocrine necroptosis to evade cancer immunosurveillance and chemotherapy.

Nat Cell Biol

September 2025

Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, West China School of Basic Medical Sciences & Forensic Medicine, West China Second University Hospital, Sichuan University, Chengdu,

Chemoresistance is the leading cause of cancer-related death. How chemotherapy subjugates the cellular crosstalk in the tumour microenvironment to cause chemoresistance remains to be defined. Here we find chemotherapy enables immunosuppressive SDF1 endothelial niche to evade immunosurveillance in ovarian and breast cancers.

View Article and Find Full Text PDF

Renal ischemia/reoxygenation triggers uremic encephalopathy (UE), culminating in cognitive and neural derangements. Despite its neuroprotective functions, the hippocampal repercussion of the estrogen receptor G protein-coupled estrogen receptor 1 (GPER1) in UE remains uncharted, alongside the prospective involvement of RUNX2. In Silico virtual screening suggested that prunetin (PRU) may activate GPER1 and inhibit RUNX2.

View Article and Find Full Text PDF

Activation of the cGAS-STING pathway plays an important role in antitumor immunity through maturation of tumor-infiltrating DCs. DCs engulf extracellular DNA released by dying cancer cells, supporting activation of the cGAS-STING pathway and concomitant DC maturation. Extracellular DNA in the tumor microenvironment is primarily derived from cells undergoing uncontrolled necrosis or programmed inflammatory death, such as necroptosis, which can be induced when apoptosis pathways are inhibited.

View Article and Find Full Text PDF

Recent work has indicated that oncolytic virotherapy leads to immunogenic cell death (ICD) as an important mechanism of action; however, the underlying cell death pathways leading to ICD have been less explored. Our previous data demonstrated that chimeric oncolytic recombinant vesicular stomatitis virus-Newcastle disease virus (rVSV-NDV) has a strong immune-stimulating potential that seems to be mediated by immunogenic syncytial oncolysis. In this work, we aimed to investigate the role of apoptosis and necroptosis in mediating syncytial cell death.

View Article and Find Full Text PDF