Design of Hierarchical Structures for Synchronized Deformations.

Sci Rep

Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper we propose a general method for creating a new type of hierarchical structures at any level in both 2D and 3D. A simple rule based on a rotate-and-mirror procedure is introduced to achieve multi-level hierarchies. These new hierarchical structures have remarkably few degrees of freedom compared to existing designs by other methods. More importantly, these structures exhibit synchronized motions during opening or closure, resulting in uniform and easily-controllable deformations. Furthermore, a simple analytical formula is found which can be used to avoid collision of units of the structure during the closing process. The novel design concept is verified by mathematical analyses, computational simulations and physical experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259711PMC
http://dx.doi.org/10.1038/srep41183DOI Listing

Publication Analysis

Top Keywords

hierarchical structures
12
design hierarchical
4
structures
4
structures synchronized
4
synchronized deformations
4
deformations paper
4
paper propose
4
propose general
4
general method
4
method creating
4

Similar Publications

CuCo-Layered Double Hydroxide Nanosheets Grown on Hierarchical Carbonized Wood as Bifunctional Electrode for Supercapacitor and Hydrogen Evolution Reaction.

Adv Sci (Weinh)

September 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.

View Article and Find Full Text PDF

Tree-based scan statistics (TBSS) are data mining methods that screen thousands of hierarchically related health outcomes to detect unsuspected adverse drug effects. TBSS traditionally analyze claims data with outcomes defined via diagnosis codes. TBSS have not been previously applied to rich clinical information in Electronic Health Records (EHR).

View Article and Find Full Text PDF

Recent advances in single-cell bioinformatics for inferring higher-order chromatin contact maps.

BMB Rep

September 2025

Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.

DNA, a large molecule located in the nucleus, carries essential genetic information, including gene loci and cis-regulatory elements. Despite its extensive length, DNA is compactly stored within the limited space of the nucleus due to its hierarchical three-dimensional (3D) organization. In this structure, DNA is organized into territories known as topologically associated domains (TADs).

View Article and Find Full Text PDF

Facile synthesis of highly active PtSnCoNi hierarchical dendritic nanowires greatly boosting signal amplification for ultrasensitive immunoassay of biomarker HER-2.

Bioelectrochemistry

August 2025

Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China. Electronic address:

Human epidermal growth factor receptor-2 (HER-2), a key biomarker in breast cancer, is critical for early diagnosis and prognosis evaluation. In this work, a label-free electrochemical immunosensor was developed for biomarker HER-2 detection based on PtSnCoNi hierarchical dendritic alloyed nanowires (PtSnCoNi HDNWs). These nanowires were synthesized via a co-reduction-triggered anisotropic growth strategy in oleylamine.

View Article and Find Full Text PDF

Multilayer metal-organic frameworks-based artificial cytoskeleton for boosting immunosensors performance.

Biosens Bioelectron

September 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:

Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.

View Article and Find Full Text PDF