Ion-Pairing Contribution to the Liposomal Transport of Topotecan as Revealed by Mechanistic Modeling.

J Pharm Sci

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536. Electronic address:

Published: April 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Actively loaded liposomal formulations of anticancer agents have been widely explored due to their high drug encapsulation efficiencies and prolonged drug retention. Mathematical models to predict and optimize drug loading and release kinetics from these nanoparticle formulations would be useful in their development and may allow researchers to tune release profiles. Such models must account for the driving forces as influenced by the physicochemical properties of the drug and the microenvironment, and the liposomal barrier properties. This study employed mechanistic modeling to describe the active liposomal loading and release kinetics of the anticancer agent topotecan (TPT). The model incorporates ammonia transport resulting in generation of a pH gradient, TPT dimerization, TPT lactone ring-opening and -closing interconversion kinetics, chloride transport, and transport of TPT-chloride ion-pairs to describe the active loading and release kinetics of TPT in the presence of varying chloride concentrations. Model-based predictions of the kinetics of active loading at varying loading concentrations of TPT and release under dynamic dialysis conditions were in reasonable agreement with experiments. These findings identify key attributes to consider in optimizing and predicting loading and release of liposomal TPT that may also be applicable to liposomal formulations of other weakly basic pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2016.12.011DOI Listing

Publication Analysis

Top Keywords

loading release
16
release kinetics
12
mechanistic modeling
8
liposomal formulations
8
describe active
8
active loading
8
liposomal
6
loading
6
release
6
tpt
6

Similar Publications

Covalently Supported Phenazine for Electrochemical Capture of Low Concentration CO.

ACS Appl Mater Interfaces

September 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.

Electrochemical CO capture (eCC) excels in selectivity, reversibility, low-temperature operation, and reusability, yet liquid-phase systems struggle with mass transfer limitations. In this study, a phenazine-based capture agent was chemically grafted onto carboxylated carbon nanotubes, achieving an active loading of 4.4 wt %.

View Article and Find Full Text PDF

Elesclomol-Copper combination synergistically targets mitochondrial metabolism in cancer stem cells to overcome chemoresistance in pancreatic ductal adenocarcinoma.

Mol Ther

September 2025

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, partly due to cancer stem cells (CSCs) that drive progression and treatment resistance. We explored the therapeutic potential of inducing cuproptosis, a copper-dependent regulated cell death, in CSC-enriched PDAC models. Using human and murine PDAC models, we evaluated elesclomol, a copper transport enhancer.

View Article and Find Full Text PDF

Michaelis-Menten kinetics of RasGAP proteins by a rapid fluorescence-based assay.

Methods

September 2025

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale University, New Haven, CT 06510, USA. Electronic address:

Ras small GTPases are essential for a wide range of cellular processes. These proteins cycle between the GDP-loaded and GTP-loaded states, and the actions of GTPase activating proteins (GAPs) are necessary to stimulate Ras-mediated GTP hydrolysis. Here, we provide a protocol to achieve Michaelis-Menten kinetic profiling of GAP-mediated stimulation of a small GTPase by real-time monitoring of inorganic phosphate release in vitro.

View Article and Find Full Text PDF

Balanced biocompatibility in high-viscosity hydroxypropyl methylcellulose-based sponge containing nanoconfined silver citrate nanoparticles.

Int J Biol Macromol

September 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:

Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) has been recognized as one of the three main gasotransmitters found extensively in tissues, regulating functions crucial for survival. In many pathological cases, its concentration drops from the intrinsic level, impairing healing and leading to unmet regeneration outcomes. A hybrid microparticle/hydrogel system was developed to sustainably release HS and regulate its level in deprived tissues.

View Article and Find Full Text PDF