98%
921
2 minutes
20
A critical role of polyethylene glycol (PEG) crowding in the packaging of plasmid DNA (pDNA) into polyplex micelles (PMs) was investigated using a series of PEG-b-poly(l-lysine) (PEG-PLys) block copolymers with varying molecular weights of both PEG and PLys segments. Rod-shaped PMs preferentially formed when the tethered PEG chains covering pDNA in a precondensed state were dense enough to overlap one another (reduced tethering density (RTD) > 1), whereas globular PMs were obtained when they were not overlapped (RTD < 1). These results submitted a scheme that steric repulsive effect of PEG regulated packaging pathways of pDNA either through folding into rod-shape or collapsing into globular depending on whether the PEG chains are overlapped or not. The rod-shaped PMs gave significantly higher gene expression efficacies in a cell-free system compared to the globular PMs, demonstrating the practical relevance of regulating packaging structure of pDNA for developing efficient gene delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.6b01247 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.
View Article and Find Full Text PDFToxicon
September 2025
Department of Toxicology and Forensic medicine, Faulty of Veterinary Medicine, Cairo University, Giza 11221, Egypt. Electronic address:
Bee venom and its principal peptide, melittin, are natural compounds with many therapeutic effects. They are also known for their hemolytic and cytotoxic properties that render their medical applications. Poly lactic-co-glycolic acid (PLGA) is a popular polymer used for different drug delivery.
View Article and Find Full Text PDFInt J Pharm
September 2025
The Fifth Affiliated Hospital, The Affiliated Panyu Central Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Gu
Elevated levels of low-density lipoprotein cholesterol (LDL-C) are a key risk factor contributing to the progression of ischemic heart disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) with small interfering RNA (siRNA) provides an alternative therapeutic option for lowering LDL-C levels. However, the poor pharmacokinetic profiles of naked siRNA hinder clinical application.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
September 2025
Extracellular vesicles (EVs) produced by stem cells are nanoscale carriers of bioactive compounds with regenerative and immunomodulatory capabilities similar to those of their parent cells. Their therapeutic potential outperforms traditional stem cell therapies by lowering hazards such tumorigenicity and allowing for precise delivery. To provide a high-efficiency platform for selectively isolating stem cell EVs from minimal serum quantities while overcoming the constraints of traditional approaches such as ultracentrifugation, we developed an immunoaffinity-based capture system utilizing SiO₂ wafers functionalized with gold nanoparticles (GNPs), polyethylene glycol (HS-PEG-COOH), and stem cell-specific antibodies.
View Article and Find Full Text PDFMacromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDF