Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In surface-based biosensors, the nonspecific or undesired adsorption of the probe is an important characteristic that is typically difficult to measure and therefore to control or eliminate. A methodology for measuring and then minimizing or eliminating this problem on gold surfaces, readily applicable to many common surface modifications is presented. Combining electrochemical perturbation and fluorescence microscopy, we show that the potential at which the adsorbed species is removed can be used as an estimate of the strength of the adsorbate-surface interaction. This desorption potential can be easily measured through an increase in fluorescence intensity as the potential is manipulated. Furthermore, this method can be used to evaluate strategies for preventing or removing nonspecific adsorption. This is demonstrated for a wide variety of surface modifications, from strongly chemisorbed monolayers such as thiol self-assembled monolayers (SAMs) to physisorbed monolayers as well as for complex surface structures like peptide and DNA mixed-component SAMs. The use of a coadsorption strategy or small magnitude potential-step cycles was shown to significantly decrease the amount of nonspecifically or noncovalently bound probe, creating better defined surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b03953DOI Listing

Publication Analysis

Top Keywords

gold surfaces
8
surface modifications
8
measuring remediating
4
remediating nonspecific
4
nonspecific modifications
4
modifications gold
4
surfaces coupled
4
coupled situ
4
situ electrochemical
4
electrochemical fluorescence
4

Similar Publications

Co and CoPc Molecular Kondo Box on Gold Surface.

Phys Rev Lett

August 2025

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

We demonstrate a class of Co and CoPc molecular Kondo boxes on the Au(111) surface through scanning tunneling microscopy experiments and first-principles calculations. The π-electron states of the CoPc molecule hybridize with the conduction electron states of the Au(111) substrate, imparting itinerantlike electron characteristics. Because of the high symmetry matching between the d_{π} orbitals of Co adatoms and the π orbitals of CoPc, the large orbital overlap predominates the formation of a Kondo singlet within the molecular complexes that prevail over the competition from the metal substrate, enabling them effectively as the molecular Kondo boxes.

View Article and Find Full Text PDF

The adsorption of amino acids on coinage metal surfaces is of interest for a range of biological applications. Central to advancing these applications is understanding the structure of the adsorbed molecules and the state they are present in. Cysteine, the focus of this work, has been studied extensively, both experimentally and theoretically.

View Article and Find Full Text PDF

The precise determination of viral titers in virological studies is a critical step to assess the infectious viral concentration of a sample. Although conventional titration methods, such as endpoint dilution or plaque forming units are the gold standards, their widespread use for screening experiments remains limited due to the time-consuming aspect and resource-intensive requirements. This study introduces a rapid and user-friendly high-throughput screening assay for evaluating viral titers.

View Article and Find Full Text PDF

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.

View Article and Find Full Text PDF