Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel indirect real-time immuno-polymerase chain reaction (RT-I-PCR) assay, an evolution of I-PCR, was developed for the quantitative detection of Mycobacterium tuberculosis PstS1 (Rv0934) with a wide dynamic range of 10ng/mL to 1pg/mL in body fluids of tuberculosis (TB) patients, which may monitor the dynamics of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2016.12.006DOI Listing

Publication Analysis

Top Keywords

quantitative detection
8
tuberculosis patients
8
development real-time
4
real-time immuno-pcr
4
immuno-pcr quantitative
4
detection mycobacterial
4
mycobacterial psts1
4
psts1 tuberculosis
4
patients novel
4
novel indirect
4

Similar Publications

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Caliciopsis pinea is the ascomycete plant pathogen that causes caliciopsis canker disease on North American Pinus strobus (eastern white pine). Infections result in downgrading of lumber due to canker formation and overall loss of vigor in P. strobus, which is a critical cover species throughout its native range.

View Article and Find Full Text PDF

The increasing use of engineered nanoparticles (NPs) in consumer and biomedical products has raised concern over their potential accumulation, transformation, and toxicity in biological systems. Accurate analytical methods are essential to detect, characterize, and quantify NPs in complex biological matrices. Inductively coupled plasma mass spectrometry (ICP-MS) has emerged as a leading technique due to its high sensitivity, elemental selectivity, and quantitative capabilities.

View Article and Find Full Text PDF

Development of smartphone-based AIE fluorescence-quenching immunochromatographic sensors for the detection of illicit drugs in various complex sample matrices.

Anal Bioanal Chem

September 2025

GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.

Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).

View Article and Find Full Text PDF

The prompt and accurate identification of pathogenic bacteria is crucial for mitigating the transmission of infections. Conventional detection methods face limitations, including lengthy processing, complex sample pretreatment, high instrumentation costs, and insufficient sensitivity for rapid on-site screening. To address these challenges, an aptamer (Apt)-sensor based on functionalized magnetic nanoparticles (MNPs) was developed for detecting Escherichia coli.

View Article and Find Full Text PDF