98%
921
2 minutes
20
Classical methods for enhancing the electromagnetic field from substrates for spectroscopic applications, such as surface-enhanced Raman spectroscopy (SERS), have involved the generation of hotspots through directed self-assembly of nanoparticles or by patterning nanoscale features using expensive nanolithography techniques. A novel large-area, cost-effective soft lithographic technique involving glancing angle deposition (GLAD) of silver on polymer gratings is reported here. This method produces hierarchical nanostructures with high enhancement factors capable of analyzing single-molecule SERS. The uniform ordered and patterned nanostructures provide extraordinary field enhancements that serve as excitatory hotspots and are herein interrogated by SERS. The high spatial homogeneity of the Raman signal and signal enhancement over a large area from a self-assembled monolayer (SAM) of 2-naphthalenethiol demonstrated the uniformity of the hotspots. The enhancement was shown to have a critical dependence on the underlying nanostructure via the surface energy landscape and GLAD angles for a fixed deposition thickness, as evidenced by atomic force microscopy and scanning electron microscopy surface analysis of the substrate. The nanostructured surface leads to an extremely concentrated electromagnetic field at sharp nanoscale peaks, here referred to as 'nano-protrusions', due to the coupling of surface plasmon resonance (SPR) with localized SPR. These nano-protrusions act as hotspots which provide Raman enhancement factors as high as 10 over a comparable SAM on silver. Comparison of our substrate with the commercial substrate Klarite™ shows higher signal enhancement and minimal signal variation with hotspot spatial distribution. By using the proper plasmon resonance angle corresponding to the laser source wavelength, further enhancement in signal intensity can be achieved. Single-molecule Raman spectra for rhodamine 6G are obtained from the best SERS substrate (a GLAD angle of 60°). The single-molecule spectrum is invariant over the substrate, due to the patterned ordered nanostructures (nano-protrusions).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/28/2/025302 | DOI Listing |
Anal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDFACS Nano
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFNanoscale
September 2025
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.
Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.
View Article and Find Full Text PDFACS Omega
September 2025
Federal University of TechnologyParanáUTFPR, Graduate Program in Chemical and Biotechnological Processes (PPGQB), Rua Cristo Rei, 19, Vila Becker, Toledo 85902-490, Paraná, Brazil.
Mesoporous carbon materials were synthesized by using sucrose as a carbon source and hydrophilic Aerosil 380 as a hard template. A two-stage optimization process based on the response surface methodology using a central composite design (RSM-CCD) was employed to enhance the adsorption performance of the material for the crystal violet (CV) dye. The first stage of optimization yielded a maximum adsorption capacity of 155.
View Article and Find Full Text PDF