Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism.

Free Radic Biol Med

Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA. Electronic address:

Published: June 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440220PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.022DOI Listing

Publication Analysis

Top Keywords

oxidatively damaged
12
damaged dna
12
dna
8
dna damage
8
help cells
8
cells cope
8
oxidative stress
8
class enzymes
8
mechanistic biological
4
biological considerations
4

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

A cationization strategy to simultaneously enhance reactive oxygen species generation and mitochondria targeting ability for enhanced photodynamic therapy.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

Mitochondria-targeted photodynamic therapy (PDT) circumvents the short lifetime and action radius limitation of reactive oxygen species (ROS) and greatly improves the anticancer PDT efficacy. However, current approaches require different molecular engineering strategies to separately improve ROS production and introduce mitochondria targeting ability, which involve tedious synthetic procedures. Herein, we report a facile one-step cationization strategy that simultaneously improves the ROS generation efficiency and introduces mitochondria targeting ability for enhanced PDT.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Nitric oxide (NO) is a multifunctional signaling molecule in oncology, influencing tumor progression, apoptosis, and immune responses. In contrast, chlorambucil (Cbl), a DNA-alkylating chemotherapeutic, induces cytotoxicity through DNA damage. Here, we report a photoresponsive nanoparticle platform for sequential codelivery of NO and Cbl, where NO is released within 10 min of irradiation, followed by Cbl release within 30 min.

View Article and Find Full Text PDF

While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.

View Article and Find Full Text PDF