98%
921
2 minutes
20
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444482 | PMC |
http://dx.doi.org/10.1089/neu.2016.4562 | DOI Listing |
J Back Musculoskelet Rehabil
September 2025
Neurology, Akdeniz University, Antalya, Turkey.
BackgroundSpinal cord injury is a complex condition affecting millions globally, often requiring extensive rehabilitation. YouTube is increasingly utilized by spinal cord injury-patients and caregivers for rehabilitation information, despite potential misinformation risks. However, few studies have assessed the quality of spinal cord injury -related content on this platform.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.
Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.
View Article and Find Full Text PDFNeurosurg Rev
September 2025
Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany.
Purpose: To share our clinical experience with conservative management of isolated spinal arterial aneurysms (ISAs) and to identify clinical scenarios where conservative management may be appropriate, in the context of a literature review.
Methods: We performed a retrospective review of spinal angiograms from two German neuroradiology centers and conducted a systematic literature review of reported ISA cases. We analyzed demographics, clinical presentation, imaging findings, treatments, and outcomes.
Comput Methods Biomech Biomed Engin
September 2025
Robotics Institute, Ningbo University of Technology, Ningbo, China.
Surface electromyography (sEMG) holds great potential in walking function evaluation. Compressed sensing (CS) leverages the sparsity of signals to decrease the number of samples required. In this study, a sEMG CS algorithm for spinal cord injury (SCI) patients based on regularized orthogonal matching pursuit (ROMP) was introduced.
View Article and Find Full Text PDFEur J Neurosci
September 2025
Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, California, USA.
Voltage-gated K channels of the Kv2 family coassemble with electrically silent KvS subunits in specific subpopulations of brain neurons, forming heteromeric Kv2/KvS channels with distinct functional properties. Little is known about the composition and function of Kv2 channels in spinal cord neurons, however. Here, we show that while Kv2.
View Article and Find Full Text PDF