98%
921
2 minutes
20
Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300907 | PMC |
http://dx.doi.org/10.1016/j.cell.2016.10.042 | DOI Listing |
Stress Biol
September 2025
Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
Introduction: Soybean cyst nematode populations are rapidly evolving to overcome the limited genetic resistance currently employed in commercial soybean varieties, threatening the future of crop production. To mitigate that, it is crucial to identify novel sources of resistance. Soybean lines PI 561310 and PI 567295 were previously found to exhibit partial SCN resistance despite lacking resistant alleles at and .
View Article and Find Full Text PDFPlant Physiol
September 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
Lemon (Citrus limon L.), an economically important Citrus species, produces high levels of citric acid. However, the regulatory mechanisms underlying citric acid accumulation in lemon fruit are poorly understood.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Plant Pathology, University of Georgia, Tifton, Georgia, USA.
Unlabelled: Seeds can serve as a vehicle for the dissemination of pests and pathogens around the world. We recently demonstrated the association of pathogenic isolates with reduced sensitivity to azoxystrobin (quinone-outside inhibitor [QoI]) in naturally infested commercial broccoli seeds. In this study, we further demonstrate that these isolates were also resistant to two succinate dehydrogenase inhibitor (SDHI) fungicides.
View Article and Find Full Text PDFBMC Genomics
September 2025
Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan.
Background: Soybean (Glycine max) is a globally important crop, yet its genetic diversity remains underutilized in breeding programs, particularly in emerging production regions such as Kazakhstan. As Kazakhstan expands its soybean cultivation, a detailed understanding of the genetic diversity and population structure of both local and international germplasm is critical for developing regionally adapted cultivars.
Results: This study analyzed 694 soybean accessions - including landraces, modern cultivars, and wild relatives (Glycine soja) - using 80,971 high-quality SNPs obtained via whole-genome resequencing.