98%
921
2 minutes
20
Vapor dosimetry models provide a means of assessing the role of delivered dose in determining the regional airway response to inspired vapors. A validated hybrid computational fluid dynamics physiologically based pharmacokinetic model for inhaled diacetyl has been developed to describe inhaled diacetyl dosimetry in both the rat and human respiratory tracts. Comparison of the distribution of respiratory tract injury with dosimetry estimates provides strong evidence that regional delivered dose rather than regional airway tissue sensitivity to diacetyl-induced injury is the critical determinant of the regional respiratory tract response to this water soluble reactive vapor. In the rat, inhalation exposure to diacetyl causes much lesser injury in the distal bronchiolar airways compared to nose and large tracheobronchial airways. The degree of injury correlates very strongly to model based estimates of local airway diacetyl concentrations. According to the model, regional dosimetry patterns of diacetyl in the human differ greatly from those in the rat with much greater penetration of diacetyl to the bronchiolar airways in the lightly exercising mouth breathing human compared to the rat, providing evidence that rat inhalation toxicity studies underpredict the risk of bronchiolar injury in the human. For example, repeated exposure of the rat to 200ppm diacetyl results in bronchiolar injury; the estimated bronchiolar tissue concentration in rats exposed to 200ppm diacetyl would occur in lightly exercising mouth breathing humans exposed to 12ppm. Consideration of airway dosimetry patterns of inspired diacetyl is critical to the proper evaluation of rodent toxicity data and its relevance for predicting human risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2016.11.007 | DOI Listing |
BMC Glob Public Health
September 2025
Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya.
Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).
Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.
Eur Radiol Exp
September 2025
Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.
Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2025
Tsinghua University, Beijing, China.
The μ-opioid receptor (μOR) is the primary drug target of opioid analgesics such as morphine and fentanyl. Activation of μORs in the central nervous system inhibits ascending pain signaling to the cortex, thereby producing analgesic effects. However, the clinical use of opioid analgesics is severely limited by adverse side effects, including respiratory depression, constipation, addiction, and the development of tolerance.
View Article and Find Full Text PDFEMBO Rep
September 2025
Max Planck Unit for the Science of Pathogens, Berlin, D-10117, Germany.
The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.
View Article and Find Full Text PDF