98%
921
2 minutes
20
The aims were to compare the physico-chemical properties (zeta-potential, wettability, surface free energy) of stereolithography materials (STL) (Photopolymer, Accura) to dentine and to evaluate the potential of each material to develop Enterococcus faecalis biofilm on their respective surfaces. Eighteen samples of each test material (Photopolymer, Accura, dentine) were employed (total n = 54) and sectioned to 1 mm squares (5 mm x 5 mm) (n = 15) or ground into a powder to measure zeta-potential (n = 3). The zeta-potential of the powder was measured using the Nano-Zetasizer technique. The contact angle (wettability, surface free energy tests) were measured on nine samples using goniometer. The biofilm attachment onto the substrate was assessed on the samples of each material using microscope and image processing software. The data were compared using one-way ANOVA with Dunnett post-hoc tests at a level of significance P ≤ 0.05. Both STL materials showed similar physico-chemical properties to dentine. The materials and dentine had negative charge (Accura: -23.7 mv, Photopolymer: -18.8 mv, dentine: -9.11 mv). The wettability test showed that all test materials were hydrophilic with a contact angle of 47.5°, 39.8°, 36.1° for Accura, Photopolymer and dentine respectively, and a surface free energy of 46.6, 57.7, 59.6 mN/m for Accura, Photopolymer and dentine, respectively. The materials and dentine proved suitable for attachment and growth of E. faecalis biofilm with no statistical differences (P > 0.05). Stereolithography materials show similar physico-chemical properties and growth of E. faecalis biofilm to dentine. Therefore, they may be an alternative to tests requiring dentine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.22788 | DOI Listing |
Int J Numer Method Biomed Eng
September 2025
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.
The screw-retained implant-supported crown is a durable, aesthetic restoration, but debonding between the crown and abutment remains a challenge to survivability. The purpose of this work was to devise an abutment shape that can be embedded into the crown while the crown is being additively manufactured. The result was a mechanically retained, no-adhesive abutment and crown unit that is mounted to the implant fixture.
View Article and Find Full Text PDFDiscov Nano
September 2025
FAMU-FSU College of Engineering, 2525 Pottsdamer Rd, Tallahassee, FL, 32310, USA.
Aim: This study investigates the enhancement of mechanical and morphological properties of dental resin composites through the incorporation of hexagonal boron nitride (hBN) and boron nitride nanotubes (BNNTs) using additive manufacturing techniques.
Materials And Methods: hBN-modified resin (1 wt%) and BNNT-modified resin (0.1 wt%) were prepared separately, with BNNTs pre-dispersed in dimethylformamide (DMF) before mixing into the resin matrix.
J Vis Exp
August 2025
Department of Biology, University of Mississippi;
Embryo mounting is one of the technical challenges researchers encounter when undertaking an imaging project. Embryos need to be oriented in a reproducible manner such that the tissue of interest is accessible to a microscope objective for the entire imaging period. To overcome this challenge, researchers can embed embryos in viscous media or create specialized dishes and casts to hold embryos in a desired orientation during imaging.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland.
The integration of 3D printing into the development of potentiometric sensors has revolutionized sensor fabrication by enabling customizable, low-cost, and rapid prototyping of analytical devices. Techniques like fused deposition modeling (FDM) and stereolithography (SLA) allow researchers to produce different sensor parts, such as electrode housings, solid contacts, reference electrodes, and even microfluidic systems. This review explains the basic principles of potentiometric sensors and shows how 3D printing helps solve problems faced in traditional sensor manufacturing.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Mechanical Engineering, Mechatronics and Robotics Department, Mechanical Engineering Faculty, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania.
This study investigates the mechanical behavior of various plastic materials through tensile and scratch testing. Three polypropylene-based composites-PP-GB30GF10, PP-TD40, and PP-GF20-were subjected to uniaxial tensile tests in accordance with standard protocols to assess their strength, stiffness, and elongation characteristics. The results highlight notable differences in the tensile performance depending on the type and percentage of reinforcing fillers, such as glass fibers and talc.
View Article and Find Full Text PDF