Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study investigates the mechanical behavior of various plastic materials through tensile and scratch testing. Three polypropylene-based composites-PP-GB30GF10, PP-TD40, and PP-GF20-were subjected to uniaxial tensile tests in accordance with standard protocols to assess their strength, stiffness, and elongation characteristics. The results highlight notable differences in the tensile performance depending on the type and percentage of reinforcing fillers, such as glass fibers and talc. In parallel, the scratch resistance was evaluated for specimens produced via stereolithography (SLA) using Formlabs Black V4 resin, a common photopolymer used in prototyping applications. The scratch test aimed to characterize the surface durability under localized mechanical stress. The findings contribute to a better understanding of the mechanical performance of these materials and their potential applications in fields requiring both structural integrity and surface resilience, such as automotive components and functional prototyping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389344 | PMC |
http://dx.doi.org/10.3390/polym17162180 | DOI Listing |