98%
921
2 minutes
20
We report here a simple yet robust transient compartmentalization system for microfluidic platforms. Cylindrical microfilaments made of commercially available fishing lines are embedded in a microfluidic chamber and employed as removable walls, dividing the chamber into several compartments. These partitions allow tight sealing for hours, and can be removed at any time by longitudinal sliding with minimal hydrodynamic perturbation. This allows the easy implementation of various functions, previously impossible or requiring more complex instrumentation. In this study, we demonstrate the applications of our strategy, firstly to trigger chemical diffusion, then to make surface co-coating or cell co-culture on a two-dimensional substrate, and finally to form multiple cell-laden hydrogel compartments for three-dimensional cell co-culture in a microfluidic device. This technology provides easy and low-cost solutions, without the use of pneumatic valves or external equipment, for constructing well-controlled microenvironments for biochemical and cellular assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6lc01143h | DOI Listing |
Liver Int
October 2025
GastroZentrum Hirslanden, Digestive Disease Center, Zürich, Switzerland.
Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
Organ-on-chip (OOC) technologies, also called microphysiological systems (MPS), offer dynamic microenvironments that improve upon static culture systems, yet widespread adoption has been hindered by fabrication complexity, reliance on polydimethylsiloxane (PDMS), and limited modularity. Here, a modular MPS platform is presented, designed for ease of use, reproducibility, and broad applicability. The system comprises layered elastomeric inserts for dual monolayer cell culture, which is clamped within a reusable acrylic cassette for perfusion studies.
View Article and Find Full Text PDFLeukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Key Labora
Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.
View Article and Find Full Text PDFBiomed Mater
September 2025
Department of Biological Sciences, Birla Institute of Technology & Science Pilani - Hyderabad Campus, Jawahar Nagar, Hyderabad, Hyderabad, Telangana, 500078, INDIA.
Metastasis in its micro and macro state contributes to the poor survival and prognosis rate in Oral Squamous Cell Carcinoma (OSCC) patients. Conventional anti-cancer treatments such as surgery, chemotherapy, and radiotherapy are known for their non-selective killing of rapidly dividing cells, both normal and cancer. To address the drawbacks arising from these modalities, we aimed to target the Glucocorticoid Receptors (GR) of OSCC to selectively co-deliver the Paclitaxel and p53 gene that induces the drug sensitivity and cytotoxicity, thereby inducing the mesenchymal-epithelial transition.
View Article and Find Full Text PDF