Polydimethylsiloxane (PDMS) chips are still the workhorses of academic microfluidics. Their production requires the fabrication of moulds, commonly produced using clean-room technologies. Light-based 3D printing and in particular, vat photopolymerization, material jetting and two-photon polymerization are rising techniques for the fabrication of moulds for PDMS replication, thanks to their accessibility, fast prototyping time, and improving resolution.
View Article and Find Full Text PDFCorrection for 'Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy' by Matthieu Sagot , , 2024, , 3508-3520, https://doi.org/10.1039/D4LC00147H.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2021
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of or genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. , renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes.
View Article and Find Full Text PDFThree-dimensional (3D)-printing techniques such as stereolithography (SLA) are currently gaining momentum for the production of miniaturized analytical devices and molds for soft lithography. However, most commercially available SLA resins inhibit polydimethylsiloxane (PDMS) curing, impeding reliable replication of the 3D-printed structures in this elastomeric material. Here, we report a systematic study, using 16 commercial resins, to identify a fast and straightforward treatment of 3D-printed structures and to support accurate PDMS replication using UV and/or thermal post-curing.
View Article and Find Full Text PDFTrends Biotechnol
June 2021
Conservation breeding and assisted reproductive technologies (ARTs) are invaluable tools to save wild animal species that are on the brink of extinction. Microfluidic devices recently developed for human or domestic animal reproductive medicine could significantly help to increase knowledge about fertility and contribute to the success of ART in wildlife. Some of these microfluidic tools could be applied to wild species, but dedicated efforts will be necessary to meet specific needs in animal conservation; for example, they need to be cost-effective, applicable to multiple species, and field-friendly.
View Article and Find Full Text PDFMicromachines (Basel)
April 2020
Hypoxia switches the metabolism of tumor cells and induces drug resistance. Currently, no therapeutic exists that effectively and specifically targets hypoxic cells in tumors. Development of such therapeutics critically depends on the availability of in vitro models that accurately recapitulate hypoxia as found in the tumor microenvironment.
View Article and Find Full Text PDFMicrosyst Nanoeng
April 2020
Currently, fluidic control in microdevices is mainly achieved either by external pumps and valves, which are expensive and bulky, or by valves integrated in the chip. Numerous types of internal valves or actuation methods have been proposed, but they generally impose difficult compromises between performance and fabrication complexity. We propose here a new paradigm for actuation in microfluidic devices based on rigid or semi-rigid walls with transversal dimensions of hundreds of micrometres that are able to slide within a microfluidic chip and to intersect microchannels with hand-driven or translation stage-based actuation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFOvarian cancer is the fifth cause of cancer-related mortality in women, with an expected 5-year survival rate of only 47%. High-grade serous carcinoma (HGSC), an epithelial cancer phenotype, is the most common malignant ovarian cancer. It is known that the precursors of HGSC originate from secretory epithelial cells within the Fallopian tube, which first develops as serous tubal intraepithelial carcinoma (STIC).
View Article and Find Full Text PDFThe significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization.
View Article and Find Full Text PDFThe introduction of poly(dimethylsiloxane) (PDMS) and soft lithography in the 90's has revolutionized the field of microfluidics by almost eliminating the need for a clean-room environment for device fabrication. More recently, 3D printing has been introduced to fabricate molds for soft lithography, the only step for which a clean-room environment is still often necessary, to further support the rapid prototyping of PDMS microfluidic devices. However, toxicity of most of the commercial 3D printing resins has been established, and little is known regarding the potential for 3D printed molds to leak components into the PDMS that would, in turn, hamper cells and/or tissues cultured in the devices.
View Article and Find Full Text PDFBiomicrofluidics
March 2018
Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular system, renal tubules or excretory ducts, cells are submitted to a strong curvature and confinement effects in addition to flow.
View Article and Find Full Text PDFWe report here a simple yet robust transient compartmentalization system for microfluidic platforms. Cylindrical microfilaments made of commercially available fishing lines are embedded in a microfluidic chamber and employed as removable walls, dividing the chamber into several compartments. These partitions allow tight sealing for hours, and can be removed at any time by longitudinal sliding with minimal hydrodynamic perturbation.
View Article and Find Full Text PDFOriented neuronal networks with controlled connectivity are required for many applications ranging from studies of neurodegeneration to neuronal computation. To build such networks in vitro, an efficient, directed and long lasting guidance of axons toward their target is a pre-requisite. The best guidance achieved so far, however, relies on confining axons in enclosed microchannels, making them poorly accessible for further investigation.
View Article and Find Full Text PDF