98%
921
2 minutes
20
Purpose: To determine the effect of model-based iterative reconstruction (IR) on coronary calcium quantification using different submillisievert CT acquisition protocols.
Methods: Twenty-eight patients received a clinically indicated non contrast-enhanced cardiac CT. After the routine dose acquisition, low-dose acquisitions were performed with 60%, 40% and 20% of the routine dose mAs. Images were reconstructed with filtered back projection (FBP), hybrid IR (HIR) and model-based IR (MIR) and Agatston scores, calcium volumes and calcium mass scores were determined.
Results: Effective dose was 0.9, 0.5, 0.4 and 0.2mSv, respectively. At 0.5 and 0.4mSv, differences in Agatston scores with both HIR and MIR compared to FBP at routine dose were small (-0.1 to -2.9%), while at 0.2mSv, differences in Agatston scores of -12.6 to -14.6% occurred. Reclassification of risk category at reduced dose levels was more frequent with MIR (21-25%) than with HIR (18%).
Conclusions: Radiation dose for coronary calcium scoring can be safely reduced to 0.4mSv using both HIR and MIR, while FBP is not feasible at these dose levels due to excessive noise. Further dose reduction can lead to an underestimation in Agatston score and subsequent reclassification to lower risk categories. Mass scores were unaffected by dose reductions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2016.09.028 | DOI Listing |
Arq Bras Cardiol
September 2025
Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil.
Background: Chronic kidney disease (CKD) is associated with a higher prevalence of valvular diseases and increased mortality from cardiovascular causes. Factors that influence the genesis of cardiac valve calcification (CVC) in these patients are not well-defined.
Objective: To determine the risk factors for valvular calcification in patients with CKD.
PLoS One
September 2025
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.
View Article and Find Full Text PDFHerz
September 2025
Department of Cardiology, The Third Clinical College of Wenzhou Medical University, 326000, Wenzhou, Zhejiang, China.
Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.
Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.
Rev Cardiovasc Med
August 2025
Department of Cardiovascular Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
The AMP-activated protein kinase (AMPK) alpha (AMPK) subunit is the catalytic subunit in the AMPK complex and includes both 1 and 2 isoforms. Phosphorylation of upstream kinases at the Thr172 site in the -subunit is critical for AMPK activation. The kinases upstream of AMPK include liver kinase B1 (LKB1), calcium/calmodulin-dependent protein kinase kinase (CaMKK), and transforming growth factor -activated kinase 1 (TAK1).
View Article and Find Full Text PDFCatheter Cardiovasc Interv
September 2025
Division of Cardiology, Osaka Rosai Hospital, Osaka, Japan.
Background: Optical coherence tomography (OCT) with artificial intelligence (AI) has been developed.
Aims: The study aimed to evaluate the differences between AI-quantified and visual assessments.
Methods: Patients scheduled for OCT-guided percutaneous coronary intervention between September 2021 and October 2022 were included.