Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051731PMC
http://dx.doi.org/10.1371/journal.pcbi.1005102DOI Listing

Publication Analysis

Top Keywords

centripetal motility
8
mouse oocytes
8
immobilized dynein
8
dynein motors
8
self-organized mechanisms
8
mechanisms asters
8
model
7
motor-gradient clustering
4
clustering model
4
model centripetal
4

Similar Publications

Currently, in vitro fabrication of intra-tissue heterogeneity remains a critical challenge in development of adult stem cell based tissue engineering. Interestingly, as a typical structure in symmetry-breaking phase transitions, topological defects are extensively presented in biological substances. These topological defects are commonly observed within cell monolayer in vitro and demonstrated to be effective in induction of intra-tissue heterogeneity by regulating cell migration.

View Article and Find Full Text PDF

Background: Recent studies have confirmed the critical role of neonatal microglia in wound healing and axonal regeneration following spinal cord injury (SCI). However, the limited migration of microglia to the center of adult lesion may significantly impede their potential benefits.

Methods: We established a model of microglial centripetal migration and prolonged retention in C57BL/6J and transgenic mice by injecting exogenous C-X3-C motif chemokine ligand 1 (CX3CL1) and macrophage colony-stimulating factor (M-CSF) directly into the lesion site post-SCI.

View Article and Find Full Text PDF

This study aimed to compare the inhibitory effect of flunixin meglumine and meloxicam on the smooth muscles of the gastrointestinal tract in male cattle. Tissue samples, including the abomasum, ileum, proximal loop and centripetal gyri of the ascending colon, were collected from routinely slaughtered male cattle. These samples were sectioned into strips and mounted in an isolated tissue bath system.

View Article and Find Full Text PDF

Wound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies.

View Article and Find Full Text PDF

Myotube formation on micropatterns guiding by centripetal cellular motility and crowding.

Mater Today Bio

October 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.

The physical microenvironment, including substrate rigidity and topology, impacts myoblast differentiation and myotube maturation. However, the interplay effect and physical mechanism of mechanical stimuli on myotube formation is poorly understood. In this study, we utilized elastic substrates, microcontact patterning technique, and particle image velocimetry to investigate the effect of substrate rigidity and topological constraints on myoblast behaviors.

View Article and Find Full Text PDF