Dynamically Coupled Residues within the SH2 Domain of FYN Are Key to Unlocking Its Activity.

Structure

MLG, Départment d'Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP212, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics Brussels (IB(2)), ULB-VUB, La Plaine Campus, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium; AI-lab, Vakgroep Computerwetenschappen,

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Src kinase activity is controlled by various mechanisms involving a coordinated movement of kinase and regulatory domains. Notwithstanding the extensive knowledge related to the backbone dynamics, little is known about the more subtle side-chain dynamics within the regulatory domains and their role in the activation process. Here, we show through experimental methyl dynamic results and predicted changes in side-chain conformational couplings that the SH2 structure of Fyn contains a dynamic network capable of propagating binding information. We reveal that binding the phosphorylated tail of Fyn perturbs a residue cluster near the linker connecting the SH2 and SH3 domains of Fyn, which is known to be relevant in the regulation of the activity of Fyn. Biochemical perturbation experiments validate that those residues are essential for inhibition of Fyn, leading to a gain of function upon mutation. These findings reveal how side-chain dynamics may facilitate the allosteric regulation of the different members of the Src kinase family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093032PMC
http://dx.doi.org/10.1016/j.str.2016.08.016DOI Listing

Publication Analysis

Top Keywords

src kinase
8
regulatory domains
8
side-chain dynamics
8
fyn
6
dynamically coupled
4
coupled residues
4
residues sh2
4
sh2 domain
4
domain fyn
4
fyn key
4

Similar Publications

Resveratrol is a natural polyphenol known for its antioxidant and anti-inflammatory effects, but its role in lung adenocarcinoma (LUAD) remains unclear. Our study integrated network pharmacology, molecular docking, and bioinformatics to investigate the molecular mechanisms by which resveratrol suppresses LUAD through the identification of key targets and pathways. We identified 100 resveratrol-related targets and 50,000 LUAD-related genes from databases, finding 98 overlapping targets.

View Article and Find Full Text PDF

Robinin (RB) is an accepted antioxidant herbal product with known cardio-protective activity. To explore the anti-oxidative potential of RB in treating myocardial ischemia or reperfusion (MI/RI) damage in rats after inducing hypercholesterolemia (HC). HC was induced by administering cholesterol (2%) to rats for eight weeks.

View Article and Find Full Text PDF

Background: Dermatologic adverse events (dAEs) are prevalent with BCR-ABL tyrosine kinase inhibitors (TKIs), affecting quality of life and treatment adherence. Despite their prevalence, underlying mechanisms of toxicity remain unclear. We sought to characterize dAEs across TKI generations to elucidate mechanisms driving toxicities.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

PTPN22-CD45 dual phosphatase retrograde feedback enhances TCR signaling and autoimmunity.

Sci Adv

September 2025

Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA.

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a gene strongly associated with lupus and other autoimmune diseases. PTPN22 regulates T cell receptor (TCR) signaling through dephosphorylation of the kinases lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70). The regulation of PTPN22 remains poorly understood.

View Article and Find Full Text PDF