98%
921
2 minutes
20
Background: Cardiovascular disease (CVD) begins early in life and is associated with both the number of risk factors present and length of exposure to these risk factors including hyperlipidemia.
Objectives: The clinical benefit of intensive lipid therapy over 25 years was investigated in the Familial Atherosclerosis Treatment Study-Observational Study.
Methods: Of 175 coronary artery disease subjects with mean low-density lipoprotein cholesterol (LDL-C) of 191 mg/dL and mean age of 50 years, who completed the randomized and placebo-controlled Familial Atherosclerosis Treatment Study, 100 chose receiving lipid management by their physicians (usual care [UC]) and 75 elected to receive an intensive treatment [IT] for lipid management with lovastatin (40 mg/d), niacin (2.5 g/d), and colestipol (20 g/d) from 1989 to 2004, followed by double therapy with simvastatin (40-80 mg/d) and niacin from 2005 to 2006 and by triple therapy of ezetimibe 10 mg and simvastatin 40 to 80 mg/d plus niacin during 2007 to 2012. Deaths from CVD, non-CVD, and any cause were compared between UC and IT using Cox proportional hazards model.
Results: UC and IT groups were similar in risk factors with the exception that IT had more severe coronary artery disease. Mean LDL-C levels were 167 mg/dL from 1988 to 2004, 97 from 2005 to 2006, and 96 from 2007 to 2012 in surviving subjects receiving UC. IT lowered LDL-C to 119, 97, and 83 mg/dL in the 3 periods, respectively. Compared with UC, IT significantly reduced total mortality (11.1 vs 26.3 per 1000 person years [PY], hazard ratio [HR] = 0.45, 95% confidence interval [CI]: 0.26-0.77, P = .003) and CVD mortality (10.6 vs 27.7 per 1000 PY, HR = 0.34, 95% CI: 0.15-0.80, P = .009). The non-CVD mortality was also reduced but was not of statistical significance (6.8 vs 12.7 per 1000 PY, HR = 0.55, 95% CI: 0.27-1.14, P = .11).
Conclusions: Long-term intensive lipid therapy significantly reduced total and cardiovascular mortality in Familial Atherosclerosis Treatment Study-Observational Study. These results support the importance of lifetime risk management to improve long-term outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055060 | PMC |
http://dx.doi.org/10.1016/j.jacl.2016.06.013 | DOI Listing |
Food Res Int
November 2025
College of Public Health, Zhengzhou University, Zhengzhou, China; Food Laboratory of Zhongyuan, Luohe, Henan, China. Electronic address:
Cholesterol homeostasis dysregulation is a primary risk factor for atherosclerosis (AS) development. Fisetin, a flavonoid compound, has shown promise in regulating cholesterol homeostasis by enhancing transintestinal cholesterol excretion (TICE). This study aimed to investigate the regulatory effects and underlying mechanisms of fisetin in AS.
View Article and Find Full Text PDFFerroptosis, an iron-dependent cell death pathway driven by lipid peroxidation, has emerged as a critical pathophysiological mechanism linking cancer and inflammatory diseases. The seemingly distinct pathologies exhibit shared microenvironmental hallmarks-oxidative stress, immune dysregulation, and metabolic reprogramming-that converge on ferroptosis regulation. This review synthesizes how ferroptosis operates at the intersection of these diseases, acting as both a tumor-suppressive mechanism and a driver of inflammatory tissue damage.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pathophysiology, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang, China.
Objective: Diabetes mellitus combined with nonalcoholic fatty liver disease is a prevalent and intricate metabolic disorder that presents a significant global health challenge, imposing economic and emotional burdens on society and families. An in-depth understanding of the disease pathogenesis is crucial for enhancing diagnostic and therapeutic efficacy. Therefore, the study aims to identify and validate autophagy-related diagnostic biomarkers associated with T2DM-associated MAFLD, investigate regulatory mechanisms in disease progression, and explore cellular diversity within the same tissue using single-cell sequencing data.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA. Electronic address:
The PACAP receptor PAC1 is a G-coupled family B1 GPCR for which the highest-affinity endogenous peptide ligands are the pituitary adenylate cyclase-activating peptides PACAP38 and PACAP27, and whose most abundant endogenous ligand is PACAP38. PACAP action at PAC1 is implicated in neuropsychiatric disorders, atherosclerosis, pain chronification, and protection from neurodegeneration and ischemia. As PACAP also interacts with two related receptors, VPAC1 and VPAC2, highly selective ligands, both agonists and antagonists, for PAC1 have been sought.
View Article and Find Full Text PDFKidney360
September 2025
Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego California.
Background: CKD is strongly associated with cardiovascular disease (CVD), yet the etiology responsible for this link remains elusive. Novel blood and urine biomarkers reflecting kidney tubule dysfunction and injury may provide novel insights to mechanisms linking the kidney to CVD.
Methods: In 470 participants of the Multi-Ethnic Study of Atherosclerosis (MESA) without type 2 diabetes, CVD or CKD, we measured six plasma (kidney injury molecule-1 [KIM-1], monocyte chemoattractant protein-1 [MCP-1], soluble urokinase plasminogen activator receptor [suPAR], tumor necrosis factor receptor [TNFR] 1 and 2, and anti-chitinase-3-like protein 1 [YKL-40]) and six urinary (alpha 1 microglobulin [A-1M], epidermal growth factor [EGF], KIM-1, MCP-1, YKL-40 and uromodulin [UMOD]) kidney tubule health biomarkers.