Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate.

Biosens Bioelectron

Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubière, France. Electronic address:

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present work, we describe a new thiamine amperometric biosensor based on thiamine pyrophosphate (ThDP)-dependent transketolase (TK)-catalyzed reaction, followed by the oxidative trapping of TK intermediate α,β-dihydroxyethylthiamine diphosphate (DHEThDP) within the enzymatic active site. For the biosensor design purpose, TK from Escherichia coli (TKec) was immobilized in MgAl-NO Layered Double Hydroxides (LDH) and the electrochemical detection was achieved with the TKec/LDH modified glassy carbon electrode (GCE). The transduction process was based on the ability of Fe(CN) to oxidize DHEThDP to glycolic acid along with ThDP regeneration. The released Fe(CN) was re-oxidized at +0.5V vs Ag-AgCl and the reaction was followed by chronoamperometry. The TKec/LDH/GCE biosensor was optimized using the best TK donor substrates, namely l-erythrulose and d-fructose-6-phosphate. ThDP was assayed with great sensitivity (3831mAMcm) over 20-400nM linear range.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2016.09.049DOI Listing

Publication Analysis

Top Keywords

biosensor based
8
oxidative trapping
8
thiamine biosensor
4
based oxidative
4
trapping enzyme-substrate
4
enzyme-substrate intermediate
4
intermediate work
4
work describe
4
describe thiamine
4
thiamine amperometric
4

Similar Publications

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.

View Article and Find Full Text PDF

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF