Publications by authors named "Bastien Doumeche"

Over the past few decades, antibiotic resistance has emerged as a major global health concern and is projected to become the leading cause of mortality worldwide by 2050. The growing human population and global warming are expected to further exacerbate this issue by increasing interactions between humans and pathogenic organisms. Unlike other studies that focus on specific aspects of antibiotic resistance, the aim of this review is to provide a comprehensive overview of this complex topic and to identify the key challenges and unanswered questions arising from heterogeneous data, the lack of scientific consensus on critical definitions, and the widespread dissemination of resistance factors.

View Article and Find Full Text PDF

Transketolases (TKs) are key enzymes of the pentose phosphate pathway, regulating several other critical pathways in cells. Considering their metabolic importance, TKs are expected to be conserved throughout evolution. However, Tittmann et al.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants in the environment that are responsible for many adverse health effects. Bioremediation appears to be a healthy and cost-effective alternative for remediating PCB-contaminated environments. While some microbial species have been observed to be capable of transforming PCBs, only two different microbial pathways (rdh and bph pathways) have been described to be involved in PCB transformations.

View Article and Find Full Text PDF

Herbicides are the most widely used class of pesticides in the world. Their intensive use raises the question of their harmfulness to the environment and human health. These pollutants need to be detected at low concentrations, especially in water samples.

View Article and Find Full Text PDF

Vibrio vulnificus (vv) is a multidrug-resistant human bacterial pathogen whose prevalence is expected to increase over the years. Transketolases (TK), transferases catalyzing two reactions of the nonoxidative branch of the pentose-phosphate pathway and therefore linked to several crucial metabolic pathways, are potential targets for new drugs against this pathogen. Here, the vvTK is crystallized and its structure is solved at 2.

View Article and Find Full Text PDF

Lignin is the most important natural source of aromatic compounds. The valorisation of lignin into aromatics requires fractionation steps that can be catalysed by ligninolytic enzymes. However, one of the main limitations of biological lignin fractionation is the low efficiency of biocatalysts; it is therefore crucial to enhance or to identify new ligninolytic enzymes.

View Article and Find Full Text PDF

Causing major health and ecological disturbances, polychlorinated biphenyls (PCBs) are persistent organic pollutants still recovered all over the world. Microbial PCB biotransformation is a promising technique for depollution, but the involved molecular mechanisms remain misunderstood. Ligninolytic enzymes are suspected to be involved in many PCB transformations, but their assessments remain scarce.

View Article and Find Full Text PDF

Lignocellulosic biomass is rich in lignins, which represent a bottomless natural source of aromatic compounds. Due to the high chemical complexity of these aromatic polymers, their biological fractionation remains challenging for biorefinery. The production of aromatics from the biological valorization of lignins requires the action of ligninolytic peroxidases and laccases produced by fungi and bacteria.

View Article and Find Full Text PDF

Metacaspases are caspase-like homologs which undergo a complex maturation process involving multiple intra-chain cleavages resulting in a composite enzyme made of a p10 and a p20 domain. Their proteolytic activity involving a cysteine-histidine catalytic dyad, show peptide bond cleavage specificity in the C-terminal to lysine and arginine, with both maturation- and catalytic processes being calcium-dependent. Here, we present the structure of a metacaspase from the yeast Candida glabrata, CgMCA-I, in complex with a unique calcium along with a structure in which three magnesium ions are bound.

View Article and Find Full Text PDF

Malaria elimination is a major goal to be reached in the next decade. Significant progress were made in the past, and the prevalence decreased in many areas while the positive trend stalled in the last years. The exact number of asymptomatic carriers of Plasmodium parasites is unknown since this population is not detected by conventional diagnosis methods and participate in the maintenance of transmission.

View Article and Find Full Text PDF

(1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PP). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineralization inhibitor PP or the mineralization stimulator inorganic phosphate (P), and whether TNAP is involved.

View Article and Find Full Text PDF

A series of alkyl thioglycosides and alkyl thiodiglycosides bearing glucose and -acetylglucosamine residues were prepared by thiol-ene coupling in moderate to good yields (40-85%). Their binding ability towards wheat germ agglutinin was measured by competitive enzyme-linked lectin assays. One of the synthetic compounds presenting two GlcNAc units showed the highest inhibitory effect of this study with an IC of 11 µM corresponding to a 3182-fold improvement compared to GlcNAc.

View Article and Find Full Text PDF

The pathogenic yeast is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources.

View Article and Find Full Text PDF

Transketolases (TKs) are ubiquitous thiamine pyrophosphate (TPP)-dependent enzymes of the nonoxidative branch of the pentose phosphate pathway. They are considered as interesting therapeutic targets in numerous diseases and infections (e.g.

View Article and Find Full Text PDF

In the present work, we describe a new thiamine amperometric biosensor based on thiamine pyrophosphate (ThDP)-dependent transketolase (TK)-catalyzed reaction, followed by the oxidative trapping of TK intermediate α,β-dihydroxyethylthiamine diphosphate (DHEThDP) within the enzymatic active site. For the biosensor design purpose, TK from Escherichia coli (TKec) was immobilized in MgAl-NO Layered Double Hydroxides (LDH) and the electrochemical detection was achieved with the TKec/LDH modified glassy carbon electrode (GCE). The transduction process was based on the ability of Fe(CN) to oxidize DHEThDP to glycolic acid along with ThDP regeneration.

View Article and Find Full Text PDF

Funnel metadynamics is a kind of computational simulation used to enhance the sampling of protein-ligand binding events in solution. By characterization of the binding interaction events, an estimated absolute binding free energy can be calculated. Nuclear magnetic resonance and funnel metadynamics were used to evaluate the binding of pyrocatechol derivatives (catechol, 4-methylcatechol, and 4-tert-butylcatechol) to human peroxiredoxin 5.

View Article and Find Full Text PDF

Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born.

View Article and Find Full Text PDF

The formate dehydrogenase (FDH) from Candida boidinii is a well-known enzyme in biocatalysis for NADH regeneration. Nevertheless, it has low activity in a water-miscible ionic liquid (1,3-dimethylimidazolium dimethyl phosphate, [MMIm][Me2 PO4 ]). In this work, this enzyme was subjected to directed evolution by using error-prone PCR, and a mutant (N187S/T321S) displaying higher activity was obtained following selection based on the formazan-based colorimetric assay.

View Article and Find Full Text PDF

The electrochemical detection of dehydrogenase activity in crude cell lysates is performed simultaneously using 96 carbon electrodes modified with electrografted phenazines. The method is applied to the screening of a library of formate dehydrogenase mutants obtained by directed evolution.

View Article and Find Full Text PDF

The rapid electrochemical screening of enzyme activities in bioelectronics is still a challenging issue. In order to solve this problem, we propose to use a 96-well electrochemical assay. This system is composed of 96 screen-printed electrodes on a printed circuit board adapted from a commercial system (carbon is used as the working electrode and silver chloride as the counter/reference electrode).

View Article and Find Full Text PDF

The study of protein conformation in ionic liquids (ILs) is crucial to understand enzymatic activity. Steady-state fluorescence is a proven, rapid and easy method to evaluate the protein structure in aqueous solutions, but it is discussed when used in ILs. In this work, the structure of the formate dehydrogenase from Candida boidinii (FDH, EC: 1.

View Article and Find Full Text PDF

The effect of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) on the copper-catalyzed luminol chemiluminescence (CL) is reported. A drastic light emission enhancement is observed, related to a strong interaction between Cu(2+) and the imidazolium ring. In these conditions, the CL reaction was able to produce light efficiently at pH as low as 6.

View Article and Find Full Text PDF

The enzyme-catalyzed gel-sol transition of calcium-alginate obtained by internal gelling strategy with the help of an entrapped alginate lyase is described. We show that alginate molecules and enzyme-produced oligoalginates shorten the gel time of physical gelatin gels (5% and 1.5%), probably due to local protein concentration increase.

View Article and Find Full Text PDF